FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Andrej Jurco

Data Lineage Analysis for Qlik Sense

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: doc. RNDr. Pavel Parizek, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2020

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodicky pokyn o etické
pripravé vysokoskolskych zavérecnych praci®.

[acknowledge that my thesis (work) is subject to the rights and obligations arising
from Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and
on Amendments to Certain Laws (the Copyright Act), as amended, (hereinafter as
the “Copyright Act®), in particular § 35, and § 60 of the Copyright Act governing
the school work.

With respect to the computer programs that are part of my thesis (work) and
with respect to all documentation related to the computer programs (“software®),
I hereby grant the so-called MIT License. The MIT License represents a license
to use the software free of charge. I grant this license to every person interested
in using the software. Each person is entitled to obtain a copy of the software
(including the related documentation) without any limitation, and may, without
limitation, use, copy, modify, merge, publish, distribute, sublicense and / or sell
copies of the software, and allow any person to whom the software is further
provided to exercise the aforementioned rights. Ways of using the software or the
extent of this use are not limited in any way.

The person interested in using the software is obliged to attach the text of the
license terms as follows:

Copyright (c) 2020 Andrej Jurco

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software®), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sub-license, and /or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the Software. THE SOFT-
WARE IS PROVIDED “AS IS“, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

In Prague date
Author’s signature

This way I would like to thank to my supervisor, doc. RNDr. Pavel Parizek,
Ph.D., for his help and advice whenever I needed anything.

Thanks should also go to Ing. Petr Kosvanec and RNDr. Lukas Hermann for
their valuable advice regarding Manta Flow platform and making sure I had all
the information I needed to work on the assignment.

I'm also extremely grateful to my parents, relatives and friends for their support
throughout all my studies and without whom it would be very difficult do get
this far.

i

Title: Data Lineage Analysis for Qlik Sense
Author: Andrej Jurco
Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Pavel Parizek, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Business Intelligence has become essential for all companies and orga-
nizations in the world over the past few years when it comes to decision-making
and observing long-term trends. It often happens that Business Intelligence tools
that are used become very complex over time and it can then be very difficult to
make any changes. Data lineage solves this problem by visualizing data flows and
showing relative dependencies. Manta Flow is the platform which creates such
lineage which supports programming languages (Java, C), databases (Oracle, MS
SQL) or Business Intelligence tools (Cognos, Qlik Sense).

The goal of this thesis was to implement a prototype of a scanner module for the
Manta Flow platform, which would analyze data flows in Qlik Sense and create
a data lineage graph from data sources to the presentation layer. This module
extracts metadata necessary for the analysis, resolves the objects that are present
in the Qlik Sense applications, and analyzes data flows in them. The resulting
data lineage graph is then visualized by other components of the Manta Flow
platform.

Keywords: data lineage, data flow, business intelligence, qlik sense

1ii

Contents

Technologies|

[2.1 Business Intelligence] . . .
2.2 Qlik Sense|
[2.3 Data Lineagel
[2.4 Manta Flow plattorm| . . .

Analysis of Qlik Sense|

[3.1 Metadata in Qlik Sense| . .
[3.2 Objects in Qlik Sense| . . .

[3.3 Visualization Expressions|

[3.4 Load Script|

[3.5 Required Features of the Qlik Sense Scanner|

A

Implementation|

Case Study and Evaluation|

[>.1 Example application| . . .
I£i|2 l::;llils:lig!lll

[>.3 Analysis and visualization|

[5.4 Space for improvement| . .

6 Conclusion!

[List of Figures|

[List of Tables|

[A_Attachments|

1. Introduction

Ever since the use of computer information systems has become a common prac-
tice in almost every sphere of business, companies have been trying to get as
much useful information as possible from the data they managed to collect. It
does not matter whether we are talking about sales statistics of a retail company,
production efficiency data of a factory, or average truck utilization of a transport
company. In each of these cases, employees responsible for making important
business decisions use the data to make informed decisions.

This is when business intelligence (BI) comes handy and businesses around
the world spend a lot of money annually to have all their data processed, analyzed
and visualized, so that business-affecting decisions can be made correctly based
on the real-world data.

There are many BI and visual analytics tools available on the market. BI
can be done in a tool as common as Microsoft Excel, or special, dedicated tools
can be used - Tableau, Microsoft SQL Server Reporting Services, Cognos or Qlik
Sense. All these tools are more or less the same and the functionality usually
does not differ in more than user interface provided and some unique aggregation
functions.

When a company wants to start using one of these tools, it needs to, aside
from providing the data for analysis, configure the tool to process the data in
the desired way and to visualize results in an appropriate way. This means that
sales performance by month is better to represent in a bar chart with each bar
representing one month (ordered chronologically) rather than visualizing it in a
single pie chart.

It is important to note that these reports or applications configured in BI tools
have got two very important properties:

1. Tools are usually configured by developers and used by managers. These
two groups of people are usually not the same.

2. These applications are often configured once and used for a long time with-
out a change.

This means that, for example, it is very easy to develop a misunderstanding
between what was desired by the manager and what was actually created by
the developer. It can then result in making informed decisions based on wrong
data and this could lead to huge losses or even bankruptcy. Another problem is
that when somebody configured a tool 10 years ago and it needs to be changed
now, there is a high chance that the employee does not work in the company
anymore or does not remember what and how exactly was configured. This can
be a problem when changes (or migration) has to be performed.

One way to solve these problems is by using data lineage. Data lineage can
visualize the way data flows into, inside, and out of an application. In our case
we could, for example, visualize data flows from databases or files into a BI tool
we use, then analyze how the data is transformed inside the tool and in which
visualizations or outputs is this data used.

This would allow a manager to see if a chart he or she is looking at is based
on valid data, whether the data was prepared correctly according to his or her

expectations. The programmer can also see if the configuration performed re-
sulted in the desired result. If a tool has to be reconfigured after 10 years, data
lineage can visualize data flows in the tool and help to quickly understand what
happens in the tool and what will happen if we change one little thing in the
configuration.

In a real-life use case this would mean that, for example, a company would sell
computers and computer accessories online. They would like to visualize com-
puter sales per salesman in order to award the top-selling employees. However,
it could happen that the sum of computer sales of salesmen is way higher than
what company account books say. A company would normally contract a consult-
ing/audit company to see where the mistake is. This, however, takes months and
costs a lot of money just to find one single mistake. Instead, a data lineage tool
can be used to see what data is used and to backtrack problems from report to
the database through all transformations. In the end, it turns out that the report
formula included the sales for computer accessories as well, not just computers.
This small mistake could cost the company a lot of time and money if an audit
was performed, or it could be fixed quickly and in a money-efficient way if a data
lineage tool was used.

Of course, data lineage is not a cure-it-all medicine for any BI solution there
is, but in many cases, a brief look at data lineage of a tool can save hours of the
tool analysis.

One of the major companies providing BI solutions is US-based company Qlik
with its products Qlik View and Qlik Sense. They have over 50 000 customers
such as Samsung, Cisco, Generali, or Deloitte [3].

On the other hand, one of the companies providing full data lineage is Manta
Software based in Prague. Via its data lineage platform, MANTA Flow, it sup-
ports data lineage in around 30 technologies, mostly databases, data integration,
and reporting tools [23].

1.1 Goals

The overall goal of this thesis project was to create a scanner module called Qlik
Sense scanner that would be implemented into the Manta Flow platform. The
scanner module must perform extraction of metadata needed for data lineage
analysis from a Qlik Sense server. After that, it must perform a syntactic and
semantic analysis of the extracted reports in order to determine data usage across
the whole tool and to transform the result of the analysis into a graph that can
be used in the Manta Flow platform.

The list of specific goals includes:

1. Get to know the Manta Flow platform and the Qlik Sense tool.

2. Design the scanner module for analysis of Qlik Sense in the Manta Flow
platform. Use already existing infrastructure of the platform.

3. Implement a prototype of the scanner, document, and test it properly.

1.2 Glossary

Let us define some important terms that are often used in the whole text.

A BI tool is an application software which is used for Business Intelligence. It
usually provides users with user interface and other tools to create reports - data
visualizations placed in a layout.

A report item is a bar chart, a table, or any other visual element which can
be placed in a report of a BI tool. It can also be an element that does not display
any dynamic data, for example, a static text field.

A data flow is a relation between two objects where one object provides the
data and the other object consumes the provided data.

Data lineage is a representation of data relations between objects. This means
that if two objects work with the same data set in a firmly set order, there is a
data relation between them. Data lineage, therefore, represents where the data
comes from, how it is modified or used, and where its life cycle ends. This repre-
sentation is usually visualized as a graph or a diagram.

A scanner module is a piece of software which can be implemented into the
MANTA Flow platform and can extract, analyze and generate data flows of the
technology it was developed for.

1.3 Outline

In Chapter 2, Qlik Sense, we first talk about business intelligence in general, then
introduce Qlik Sense, describe its structure and functionality necessary to under-
stand what kind of tool is about to be analyzed. We also describe data lineage
and the Manta Flow platform into which the scanner module is implemented.

Chapter 3, Analysis, describes how Qlik Sense works, how it processes, stores
and loads data, what can be done with the data and how Qlik Sense stores and
provides the metadata about its structure. We further specify required features
of the scanner module which are based on the analysis outcome.

Chapter 4, Implementation, describes how the scanner module was imple-
mented based on the outcome of the analysis to meet the required features. It
describes the implementation details of all three major components of the scanner
module - the Extractor, the Resolver, and the Data Flow Generator.

The last chapter, Evaluation, demonstrates the functionality of the scanner
module on a real-world example and discusses limitations of the prototype.

Because data lineage graphs and other visualizations used in figures of this
work usually display many objects, their readability is greatly reduced when used
in the text. Because of this, we included all figures in the attachment of this
work, so that the reader can see and examine them in an appropriate resolution
if it is desired.

2. Technologies

In this chapter, we will introduce Business Intelligence (BI), its purpose, common
visualization layer and object structure and features. Then we will show how BI
concepts are implemented in Qlik Sense, how the application works and what
key features we are going to focus on. In the end, we talk about the Manta
Flow platform in order to be able to understand what it takes to implement our
scanner module into the platform.

2.1 Business Intelligence

Business Intelligence, in relation to this thesis, can be understood as a set of
processes, tools and analyses used to process, aggregate and visualize business-
related data used for making an informed decision. It helps people see data in a
processed and visualized form so that the person that interprets the data can see
clearly what the situation is like.

The key use case for all Bl tools is monitoring company metrics based on
collected data and make informed decisions based on these metrics in order to
make the company more successful. Some of the common metrics can be quarterly
sales performance, production efficiency data or sales margin information.

A more concrete example could be a transport company can see in their BI tool
reports that fuel expenses take up 50% of their expenses altogether. Thanks to
their BI tool they already found out what their problem was. Now that they
know the problem, they can take precautions - they can, for example, teach their
drivers how to drive fuel-efficiently or they can invest in newer trucks. To see how
successful their effort is, they can compare the data over time in the BI tool. If
the share of fuel expenses shrinks, their actions were successful, otherwise, they
have to change their policies and look for other options.

Research performed for Qlik found out that 94% of business decision-makers
think that using data helps them do their job better while only 24% of them
feel fully confident in their ability to read, work with, analyze, and argue with
data [9]. Moreover, the importance of BI is highlighted by the fact that the BI
software industry itself was valued in 2020 at $14.7 billion [1].

Even though there are many BI tools on the market, their concepts and fea-
tures are usually very similar, even though individual components are named
differently. Most of the functionality is concerning data preparation and the vi-
sualization itself is usually only different in the list of different graphs and other
visualizations provided.

Since we are concerned in data flows inside BI tools (more specifically, in Qlik
Sense), let us describe typical data flows in BI tools:

1. Fetching data from data sources

In this phase, the tool connects to data sources and fetches the data it needs
to create a report. BI tools usually offer several options for data-loading.

The most common is loading data directly from the user’s databases, but
there are also other options. Some tools provide loading data from files,

such as Microsoft Excel sheets, CSV or XML files saved locally or in a cloud
storage, while it is not rare to see an option to manually insert values.

Data values loaded from these data sources are usually unmodified, but
most tools offer options to modify loaded data in this phase.

2. Processing loaded data

After the data is fetched, the data is usually transformed, modified and cus-
tomized to prepare it for insertion into the visualization. Among common
operations are joins, unions or various data object creation.

3. Visualization of data

Once all the data is prepared, it is forwarded into the reports and its visu-
alizations which, based on the data provided, create graphs that the user
can see and use.

Data lineage should ideally capture all data flows because they are all inter-
connected and there can be several inconsistencies and incomplete information
if any of these data flow types are absent from the lineage. This can ultimately
lead to an incorrect data lineage which usually has no value for the customer.

If we, for example, know our data sources and data processing actions, but our
data lineage does not cover the visualization layer of the application, we usually
have no idea how significant each loaded column or table is as we do not know if
the column is used in every single graph of the visualization layer, or it is never
actually used and it can be ignored.

2.2 Qlik Sense

Qlik Sense is a complete analytics platform that provides an intuitive user inter-
face, data transformation options, many visualization objects and extensibility.

2.2.1 Qlik Sense products

Qlik offers several products in the Qlik Sense product family. Some products are
stand-alone applications, other products are just implemented in these stand—
alone applications.

A Qlik Sense distribution usually includes a server and a client. A server can
run on a remotely accessible machine, for example at the company headquarters,
or it can run on the computer of the user. It processes all client requests and
stores all data created by its users. The server is usually accessed by users from
the web browsers, just like common websites. The server processes all data and
sends the output to the user who can work with the Qlik Sense without installing
anything additional on his or her computer. Qlik Sense Desktop is distributed as
a server and a client in a single Windows application, so the client can be in this
case both the Qlik Sense Desktop application and the web browser.

Below are a list and a short description of various products offered by Qlik.

Qlik Sense Enterprise

Qlik Sense Enterprise is the full version of Qlik Sense, supporting a full spectrum
of analytics use cases on a multi-cloud platform. Thanks to its containerized
multi-cloud architecture, Qlik Sense Enterprise can be deployed on-premise, in a
private cloud or in Qlik’s hosted cloud [11].

Qlik Sense Business

Qlik Sense Business is a SaaS (software as a service) that combines Qlik’s analytics
platform with collaboration and sharing options. This means that an application
can be shared with other users or groups.

Qlik Sense Desktop

Qlik Sense Desktop is the Windows version of Qlik Sense which can be run locally.
When compared to Business or Enterprise versions, it provides less functionality.
Since it is run locally, collaboration options are not available and applications
created in this Qlik Sense Desktop can not be shared with other users. Security
functionality is disabled because of absent sharing options.

Qlik Sense Mobile App

Qlik Sense Mobile App is an iOS application that allows a user to connect to a
Qlik Sense server, download and view applications offline.

Qlik Analytics Platform

Qlik Analytics Platform is a platform for developing custom analytic applications
using a wide variety of Qlik-authored APIs and SDKs. It extends Qlik Sense En-
terprise and Qlik Sense Desktop with editors for developing extensions (extending
visualizations with custom behavior/visual effects) or mashups (web pages that
connect to a Qlik Sense server and visualize data from various sources).

2.2.2 Qlik Sense Object Structure

Even though there are several versions of Qlik Sense, they all implement the same
concepts and form the same structure. The difference is mostly in what can be
done with the object structure created. Some versions allow users to share it,
some allow creating duplicate or publishing on the web.

Every Qlik Sense server, whether it is a cloud version (Qlik Sense Business/En-
terprise) or a local version (Qlik Sense Desktop), consists of objects called Ap-
plications. These applications are individual units in Qlik Sense and there is no
relation between any 2 of them. At most, they can load data from the same data
source.

When a user creates an application, it is empty and there are several things a
user can do. It can be connected to data sources, which can be various databases,
file hosting services or files on the server’s file system. Additionally, data can be
input manually.

It is very common in Qlik Sense to perform data transformations when data
source connections are created. These transformations usually include a table or a
column renaming, table merging and splitting, creating aliases, modifying column
values using maps or storing transformed data into a file. These commands,
together with commands defining which columns and tables from the data sources
shall be loaded, are stored in a Load Script.

Once the data loading and transformation commands are set up, a user can
trigger data-loading action which performs the configured commands and saves
resulting data locally on the server. This data is used for visualizations and other
usages until data-loading action is triggered again. Qlik Sense does not refresh
this data automatically. However, there are some extensions that automatically
launch data-loading action.

After the data is loaded, it can be used to create visualizations. Only tables
that are saved locally after data-loading and system-provided statistics tables can
be used for the calculation of graphs and other visualizations.

The main component of data visualization is a visualization, in other BI tools
usually referred to as a Report Item. Visualizations are grouped in sheets, which
are usually focused on some part of data (sales, turnover or growth). This means
that in a sheet named Sales we could find a bar chart of sales by quarter, a
gauge measuring total sales in the past 12 months or a KPI (Key Performance
Indicator) showing average and target profit per sale.

When we talk about developing a Qlik Sense application, it is usually the
actions mentioned above that developers do - defining data loading and transfor-
mation commands and creating visualizations.

These visualizations are, however, dynamic, since they refresh with every new
data-loading action. That is why Qlik Sense provides Stories functionality. The
easiest way to understand what a story is is by comparing it to a Microsoft
PowerPoint presentation. A story is a collection of slides with graphs, text and
images that can be used for presentations.

A user can, for example, save some important visualizations at the end of a
fiscal quarter for a presentation to his/her superiors without a need to use any
external tools for persisting the graph image and creating a presentation about
the quarterly results.

As we have shown above, the main structure of a Qlik Sense application is not
very complicated and high-level data relations are quite obvious. As visualized in
Figure first there is connecting to data sources, from which data are loaded
and transformed. The resulting data forms tables which are saved locally and it
is used in visualizations and stories.

Qlik Sense server

Qlik Sense application

Data sources Load Script Qlik Sense tables Sheets and Stories
> > Visualizations >

Figure 2.1: Visualization of data flows of a Qlik Sense application.

Now that we know what the basic structure of Qlik Sense is, it is a good time
to explain what individual components are and what they do in more detail.

2.2.3 Applications

Application is an elementary building block of Qlik Sense. Apart from server
settings, every action done in Qlik Sense is related to a single application. This
means that an application is an independent entity in Qlik Sense.

All objects in Qlik Sense such as sheets, visualizations, stories or loaded data
belong to a single application and once the application is deleted, all its objects
and structure is deleted as well.

Applications are stored as QVF (Qlik View Format) files and are loaded by
Qlik Sense when they are opened. Since applications are not server-dependent, it
is possible to migrate applications between servers by copying the application’s
QVF file. However, when cloud versions of Qlik Sense are used, application access
rights are related to the server and are not included in the QVF file.

Apart from a simple usage, where data loading, transformation and visualiza-
tion is performed, there is one other common usage. When data sources provide
very large data sets, it is sometimes convenient for performance reasons to split
data preparation and visualizations into several apps. This means that data is
loaded from data sources and transformed in one or more applications and re-
sulting tables are stored in QVD (Qlik View Data), CSV or TXT files. Then
visualization application loads these processed tables from the files and uses the
data in visualizations. In Qlik Sense Enterprise it is also possible to split the
work using on-demand apps. You can see a Qlik Sense Application user interface

in Figure

TestApp2

Dato last loaded: 18 Jul 2819, 83:49
Published: 15 Jul 2828, 89:26
Published to: Everyone

[Sheets [] Bookmarks [Stories

¥ Public sheets (5)

Sales Dashboard) Product Details €] Customer Details) Customer Location €

Figure 2.2: An application overview user interface of the Qlik Sense Enterprise
client.

© 00 O Ui Wi+

2.2.4 Data Loading and Transformation

Data loading is an essential feature that each BI tool must provide. All steps that
are needed to be performed in this part of data-processing are saved as Load Script
which is a script that uses script lan-

guage created by Qlik. We will talk

more about the script language in

Chapter 3. Salesfact

Connections to data sources are Saleld

done using Qlik connectors. There

are many built-in connectors for REST Productld

data sources, Salesforce accounts, web

files or common database engines, such Empld

as Oracle, PostgreSQL, IBM DB2 or Dateld
Teradata. On top of this, data can ’
be downloaded from Qlik DataMarket OrderQuantity

(Qlik Sense Enterprise) and there are
additional connectors for download on
Qlik’s website. UnitPrice

Qlik Sense provides users with
Data Manager, which is a graphi-
cal user interface that generates Load
Script without any need for under-
standing the script language. How-
ever, only simple data transformations
can be generated and complicated op-
erations may need to be written directly.

A simple table-loading script statement can be seen below. This statement
loads data from a database into a table named Salesfact. Qlik Sense then visual-
izes the table in its Data model viewer very simply, as illustrated in Figure [2.3

SalesAmount

Figure 2.3: A script-loaded table visual-
ized in Qlik Sense’s Data model viewer.

[Salesfact]:

SELECT Saleld ,
Productld,
Empld,
Dateld ,
OrderQuantity ,
SalesAmount ,
UnitPrice

FROM dbo. Salesfact ;

2.2.5 Sheets

As mentioned earlier, sheets are objects belonging to individual applications that
group visualizations. Each sheet has a layout, either fixed-sized or extended,
where visualizations are placed. These sheets can be duplicated within an appli-
cation, but they cannot be copied across applications. An example of how a Qlik
Sense Sheet looks like can be seen in Figure [2.4

10

. Year Total sales: $104.9M
26M
Measures
W sales
W Margin

5
Sales, Margin

Quarter

Month

Week

. Region Product Treemap

Germany Produce Canned Products Deli Frozen Foods Dairy Beverages
Vegetables i Canned Shrimp Pizza Vegetables Dairy Carbonated
Beverages

Nordic -
Frozen Desserts .
Spain Beverages

v Starchy Fo.. Beerand
usa Snacks Baking Goods starchyFoods Wi
Snack Foods Baking Jamsand

Goods Jellies

CannedTuna Canned
Sardines

Figure 2.4: Visualization of a sample sheet in Qlik Sense.

2.2.6 Visualizations

Visualizations are objects which have the highest value for users. It is here where
the actual analysis is shown and where they get all their BI tool value they need.
Qlik Sense provides many builtin visualizations, for example, a bar chart, a pivot
table or a distribution plot. It is also possible to create custom visualizations
using the Extension or Widget editors which are available in Qlik Sense Desktop
and Qlik Sense Enterprise.

Visualizations use Multidimensional Analysis, which means that all data that
is provided for visualization is either a dimension or a measure.

A Dimension specifies the way data is supposed to be grouped. It is the
easiest to imagine a dimension as an X-axis in a 2-dimensional graph. If we make
a sales chart, we may want to group data by quarters or when we evaluate the
production efficiency of factories, we may want to group production data by the
city in which is the factory.

There is also a hierarchical dimension, sometimes called a drill-down dimen-
sion, which is a combination of related parameters. It is most commonly used in
connection to time, such as relation year-quarter-month-week or location - town-
province-country-continent. However, Qlik Sense allows users to define their own
drill-down dimensions which are not limited to time or location only.

A Measure defines what shall be calculated for the dimension groups. Mea-
sures usually contain an expression that uses an aggregation function, such as
sum, average, maximum or minimum. In a 2-dimensional graph, we could com-
pare a measure to the Y-axis. If we have sales grouped by quarter (dimension),
we could want to set a measure to the sum of sales to see sales statistics per
quarter.

It is worth noting that each visualization uses a different amount of dimen-
sions or measures. Some visualizations use only 1 dimension and no measures
while other visualizations can use 2 dimensions and 3 measures. You can see an
example of the Qlik Sense user interface for setting dimensions and measures of
a visualization in Figure [2.5]

Qlik Sense offers an option to save a dimension, a measure or a visualization

11

for reuse. This means that a user can define some dimensions, measures and vi-
sualizations once and use them at several locations without any need for repeated
creating. If a shared item is modified, all its usages across all sheets and visu-
alizations are modified automatically. This is particularly useful for cases when
an object is used several times and modification of every single usage would be a
very repetitive and possibly time-consuming activity.

Dimensions
Bar
Customer Name n B
Add
Alternative dimensions

Add alternative

Measures
Height

Total Cost » B

Add

Alternative measures

Add alternative

Figure 2.5: An example of how Qlik Sense user interface for setting visualization’s
dimensions and measures looks.

2.2.7 Stories

Storytelling is a feature intended for sharing of data discoveries, reporting and
presentation. Fach story consists of several slides that can be populated with
slide items such as snapshots, images, text or live sheets.

Snapshots are commonly used for highlighting some interesting data findings,
usually after applying some selection filters while providing the ability to jump
directly to the sheet and visualization that is the source of the given snapshot.
Live sheets add interactivity to the presentations which means that data could
be updated every time a presentation is given without any need for modifying
the story. Elements such as text, images, shapes and effects offer options for slide
customization, however, they have nothing to do with data flows.

12

2.2.8 Other Objects

Except for the above-mentioned objects, which are the essence of Qlik Sense and
most functionality this tool provides, there are two other commonly used objects
- variables and bookmarks.

Variables are particularly useful in cases where dynamic data needs to be
supplied. A user can create a variable during Load Script execution using one
of its statements or they can be created using a graphical user interface in the
Analysis interface of Qlik Sense.

Variables can be either assigned a static value or they can be set using an
expression which is either evaluated at variable creation or it can be evaluated
dynamically every time the variable is used while taking into account currently
set filters and evaluating filtered data only. A common usage of variables is in
the Load Script for-cycles when iterating over a list of tables is desired since a
variable can contain a comma-separated list of strings. Moreover, if we wanted
to include total sales amount in the title of a bar chart displaying sales statistics,
this number could be added into the title string dynamically using a variable and
string concatenation.

As mentioned earlier, Qlik Sense provides filtering options during analysis.
Users can create their own filters by creating data selection from a list of values
each column offers. This means that if we have a sheet of sales and we only want
to see sales statistics for the top 5 salesmen, we can limit selection to data of
these five salesmen and all visualizations in the application are recalculated with
the data created by selection filtering.

Once these selections are created and the user wants to keep them, they can
be saved as bookmarks. In other words, bookmarks are Qlik Sense’s name for
saved selections. These bookmarks are not related to any sheet, if they are used,
their selections are applied application-wide.

2.2.9 Qlik Sense Use Case

Needed? There were small use cases across the whole Qlik Sense part to show
what individual objects are used for.

2.3 Data Lineage

Data lineage provides information about the origin, movement, transformation
and usage of information throughout its life cycle. It allows users to track in-
formation step-by-step and monitor how it was created, where it was used, what
transformations it underwent and what other data was created based on it. Data
lineage helps to answer some common questions that developers or data analysts
usually ask - Where does this information come from? What happens if I modify
this piece of code? How do I know that the data I am looking at is correct?

Data lineage is no new term in the world of data and there are many companies
that provide data lineage. It can be done either manually, commonly done by
audit and consultancy companies or it can be automated, where the key players
are MANTA Software, Collibra and Informatica.

13

The role of data in everyday life and in the business sphere is very important
in these days and it is crucial for each company to know where its data come from
and what happens to it. Large companies usually spend large sums to consulting
or audit companies to have their data lineage created or updated and despite the
price they have to pay it often pays off. It goes therefore without saying that an
expensive, but a well-informed decision is better than a cheap and misinformed
decision. Data lineage is usually visualized in form of a graph and that is why it
is not very hard to navigate in it even for less technical employees.

There is probably no company in the world that would not find a single use
case of data lineage in their business. Health companies find it useful to see how
data of their clients is used in databases, processed and used since health records
are a very sensitive piece of data and privacy and security are required on a very
high level. Database developers certainly appreciate impact analysis options and
what-if analyses that come with data lineage. Thanks to it they can see what
would happen if they changed some piece of code and what would be affected.
Data quality can also be examined using data lineage which is a feature that
many chief officers appreciate in companies across all business sectors.

Data lineage in BI tools such as Qlik Sense is usually used together with data
lineage of databases, ETI[]tools and other data sources to show how all the data
that undergoes some transformations and various stages of life cycle is used in
(usually) last phase of life cycle. It is indeed most often the BI tools that are at
the end of the data life cycle since reporting tools almost never produce any new
data, but they consume data directed to them from data sources.

It is often important to know where report data originates, what happens to
it and how the final visualization was calculated in order to ensure that data
quality is not flawed and the data that decisions are based on are valid. BI tools
are usually complex and if any changes are made anywhere on the way from a
data source to the BI tool, an impact analysis is necessary. Even a tiny change
in the beginning of the data life cycle can cause some serious changes in reports
that are reviewed by the decision-makers.

2.3.1 Analysis output

Data lineage can be performed and visualized in many different forms which
result in similar output, however, some data lineage analyses can only use direct
data flows and some analyses also analyze indirect flows. The difference is that a
direct flow is between two data sets where the target data set contains data based
directly on the source data set. An example of a direct data flow would be a data
set of monthly sales which was created from sales data loaded from a database
using an aggregation function of summation. Indirect flows, on the other hand,
only affect the source data set. Indirect flows are usually filters, limitations or
various conditions. A good example would be extending of the direct data flow
example with condition that sales records are filtered to sales to customers based
in Germany. Here, the country of origin of a customer is an indirect data flow as
it does not provide any data to the target data source, however, it affects what
sales records are used from the source data set.

IExtract, transform, load

14

Another important difference between data lineages provided by different com-
panies is the form of visualization. A very common form of visualization is a
directed graph that provides very good readability even for large graphs. It is no
wonder then that almost all data lineage providers use graphs. Some graphs are
interactive with zooming options, various filters and several detail levels, some are
static graph images providing only high-level data lineage information without
too much detail.

An example of a visualized data lineage graph in the MANTA Flow platform
can be seen in Figure [2.6]

ﬁ‘ [st Magiai
@ | RIP_PROCIST DT

L]

Db Pusled bk | | Dasbaca e Pl

W_308_SMIT LFS_T0_STAGIG AT SHIT, LA T _MAET_His

Dwscriphion

Thei Reeed prededurs b extracteg nformation B
From b PPD: opssrtionesl sasting St sbass,
vl ponkntiee Lablin i et he ALSDWH, ard | =

Figure 2.6: An example of how a data lineage graph can look [6].

2.3.2 Use Case

A very good and creative use of data lineage was from an international bank
which was using a workshop-type software to release internal production software.
Because this internal database software was so complex, they had 10 to 15 patches
of code each day between releases. To make sure that the environment did not
crash, they had to deploy those patches of code all at once. However, each patch
was developed by a different team and they did not know how other pieces of
code were dependent on their code. This lead to frequent environment crash as
these patches were applied in the wrong order.

However, after the company started to use a data lineage tool, MANTA Flow,
they could see how each piece of code was related to other pieces and they could
use MANTA API to generate correct the order of applying patches so that the
environment did not crash and releases were on time. Compared to the old way
of workflow in the bank, this was their new routine where only one person was
needed to make sure patches are applied correctly:

1. Gather the patches

2. Upload them into MANTA

3. Use MANTA to determine the order of deployment
4. Order the scripts accordingly

5. Release them in that order [13].

This example shows how even complex and potentially unsolvable problems
can be resolved fairly simply by using data lineage tools available on the market.

15

2.4 Manta Flow platform

MANTA Software is a Czech company developing an automated data lineage
platform. It performs data lineage analysis using metadata retrieved from indi-
vidual technologies and representing the lineage in form of an interactive graph.
First scripts for automated data lineage analysis were written in 2005 [§] and since
then the company, which started as a project of a Czech consultancy company,
Profinit, became an independent company with its own platform supporting over
30 technologies.

The main advantages that MANTA and its platform provide in comparison to
other competitors in the field are the number of technologies supported, detail of
data lineage and performance. It is capable of analyzing very large applications
and databases in great detail and creating a data lineage graph across several
technologies used by the customer within a few minutes.

2.4.1 Supported BI tools

It has to be said that Qlik Sense is definitely not the first BI tool that became
supported by the MANTA platform. Among already supported tools are Cognos,
PowerBI, Tableau or OBIEE. It was, therefore, possible to reuse some concepts
used in data lineage analysis of these tools and since once of the goals of this
work was to use already existing structure provided by the MANTA platform, the
architecture of our scanner module is similar on a high-level to scanner modules
used for the analysis of the above-mentioned tools.

2.4.2 Visualization of data lineage in MANTA Flow

MANTA Flow uses graphs to visualize data lineage as well. In order to be able
to visualize data lineage across several technologies in a single graph, they use
a graph that is split into several columns where every two columns represent
one operation on data - nodes in the left column are input data operation and
nodes in the right column represent the end of the operation. This way it is quite
simple to follow the data life cycle in the graph starting in the leftmost column
and slowly iterating across columns to the right to see what is happening to it.
However, it is important to bear in mind that this is just a general structure of
graphs in MANTA Flow and since it covers various different technologies which
can have various, often incompatible model structures, the actual graph structure
varies to match these structures as accurately and comprehensibly as possible.
An example of a data lineage visualization can be found in Figure

Data lineage which is a result of data flow analysis usually includes both direct
and indirect flows. The degree of detail often depends on the metadata that can
be retrieved from the technology as not all technologies provide API that allows
the analysis to be performed in maximum detail. Moreover, some metadata can
be encrypted or modified in a way that no relevant information can be retrieved.

Once the graph is generated after successfully performing an analysis, it can
be modified by the user to match his or her needs. The user interface allows
user to specify which objects (databases, tables, report items or even Qlik Sense
applications) shall be visualized in the graph and in addition to that MANTA

16

Flow provides the user with a possibility of modifying graph with visualization
parameters which are:

Detail

Defines the level of detail in which the graph objects will be visualized.
There are three levels of detail, high, medium and low, and objects for each
level are defined individually for each supported technology. For example,
low detail could mean that only databases and root directories will be shown
in the graph if a database technology is visualized. On the other hand, the
high detail level displays all nodes that are created in the graph and are
available for visualization including columns of database tables and data
items of data sets.

Direction

Allows a user to either only visualize forward edges which are edges going
from the selected objects or to visualize backward edges which are edges
that lead to the objects selected. Alternatively, both sets of edges can be
shown in the graph.

Flows

Allows hiding indirect data flows.

Filters

Allows a user to either show objects of all technology groups or only ob-
jects of group DBs, files & reports, Database objects or Important objects.
These groups are not mutually exclusive and technologies in each group are
preconfigured.

Steps Displayed

Sets the number of data flow steps shown in the visualized graph. Its value
is between 0 and 10.

There are also other filters available. Nodes sometimes only serve as a con-
tainer for organization and nesting of other graph nodes, but are not relevant
for data lineage and their visualization would only result in a more complicated
graph with no added value. For this reason, MANTA Flow provides vertical
filters that remove these ’container’ nodes from the visualized graphs. Vertical
filters are defined as technology-specific and a user cannot modify them. A user
can, however, use horizontal filters which can remove nodes that represent in-
ner transformations, inner tables and procedures and functions. You can see the
MANTA Flow’s Viewer interface in Figure [2.8]

17

__ —fan
_————ff° EaSHORT NawE

268 ma

1T CHM_CLICNT
B FNAMF

@ 7 INFA REP

7 KAME_FIRST

HHHH T HAME LasT

= @ CUSTOMER_SCGMENT

1 B CUSTOMER
B CUSTOMER SEGMENT - 1D

1D SHORT NAME

= W cowimact_ivee

o | SHoRT_we

F101 Pary

= & DWH_Lowd
@ Lo

[=1 a's Import LOAN

=2 Lomd LOAN_CUSTOMER_PERSON

—f B 4=

=)0 Cube - Costome Conlrect

&% wener

= B COMTRACT FAYMENT

1 @ CONTRACT
I CONTRACT TYREID

=07 DataFlow

1@ CUSTONER

B CUSTOMER SESMENT -1D |

=1 B CONTRACT

—fo B CONTRACT TYPE 1D

D SHORT NAME |

F1 & CONTRACT [|

1 CONTRACT TYPE

4 ao

o I SHORT NAME

D CONTRACT TYRE . ID = B

1 @ CONTRACT TYPE |]
an If

) L) HISTDHIZE_CUSTOMLH_BODY

Tl L

/,‘

I E) manta

o~ @ sHoAT HamE Il

-+ @ SHORT NAME —

|
 ——— T
= CONTRACT IYFL

L0 Fany

S B oW Led

OMER_PERSON

= B CONTRACT T¥PL
1@ Type
B

=8 Cube - Cuscamer Comract
= | CONTRACT TYPE

=17

o [E SKORT NAME

= @ CUNIRACT TYeL

= B Type
|-+ BIALLY

& [0 CORF CONTRACTS

orange - Oracle,

Y

(green - MS SQL

Figure 2.7: A data lineage visualization example of data flows of several technolo-
blue - Informatica PowerCenter, gray - SSAS).

gies created by the MANTA Flow platform

18

Repository

~ [Filesystem
localhost
~ (3 Qlk Sense
~ & MapOnlyApp

3 3$SysTable 3
[$$SysTable 4
[$8SysTable 5
LoadScript

= Region

B3 Sales data
Shared Objects
E3 sSheet1

Visualization Parameters

Detail @ Direction @
Q Low O Forward
O Medium O Backward
@ High @® Both

A search repository...

+

E= Region
LoadScript

Shared Objecis

My new sheet (6efa3bc1-d08a-40ec-aded-c3ed779b4hi)

Flows @ Filters @

Visualize indirect flows Everything

Selected Elements

Steps Displayed @

10

Visualize ~

Figure 2.8: The MANTA Flow platform’s Viewer interface.

19

3. Analysis of Qlik Sense

In this chapter, we will analyze Qlik Sense to understand what needs to be done in
order to create a module for data lineage analysis of Qlik Sense applications. The
most important information for us will be how Qlik Sense stores its metadata,
how it can be retrieved from the server, what the object model of a Qlik Sense
application looks like and what relations there are between individual objects of
the model.

3.1 Metadata in Qlik Sense

Metadata or even application data in any system or an application can be saved
in several ways to store the state of the program. Using JSON or XML files for
this purpose is a common practice in the world of BI tools. Qlik Sense, however,
saves its application data in QVPﬂ files where each file contains all data and
metadata of a single application. This means that whenever an application is
opened in Qlik Sense, only a single file has to be loaded. QVF files are binary
and it is not possible to read their content directly. Therefore it is not possible to
simply open one such file and find all metadata information from it directly - we
have to use the Qlik Sense Engine to process the file (open the application) and
then, using a Qlik Sense API, we can retrieve information in form of responses
to our server requests.

3.1.1 Qlik Engine API

Because only a Qlik Sense server can read and work with the information in a
QVF file the only way to retrieve the information we need is to communicate
with the server. Qlik Sense provides APIs and SDKs for building visualization
extensions, managing data on the server, integration of Qlik Sense in windows
applications or building custom data connectors [20].

In this section we are going to describe how the API works, how does the
communication protocol look like and what kind of information can be retrieved
using it.

Overview

The API that is useful for our scanner module is called Qlik Engine API, some-
times also called Qlik Engine JSON API 1t is a Web Socket protocol that uses
JSON to pass information between the QESY and the clients. The Qlik Engine
API works on any platform and with any programming language that includes a
Web Socket library [17].

This protocol uses generic objects. The main concept is that a method points
out to a JSON object that is generic and that has a hierarchical structure. A
generic object:

1Qlik View File, which was originally used in the older Qlik product - Qlik View
2Qlik Sense Engine Service, the application service that handles application calculations and
logic [5].

20

e Can be a sheet, a story, a list object, a hypercube, a slide, a bookmark, a
dimension, a measure or a pointer to another generic object.

e [s hierarchical, meaning that it contains the definition of all its children and
grandchildren.

e Can be the concatenation of several generic objects. For example, a generic
object could be both a list object and a chart. In that case, it would contain
the definition of a list object and the definition of a chart.

e A generic object can get any type. This implies that the engine does not
care about the type of the object.

The Qlik Engine API can be used to communicate between a client, for ex-
ample, our scanner module, and the QPSﬂ or between the QPS and QES in case
of Qlik Sense server installation (Qlik Sense Enterprise), as shown in Figure
or directly between the client and the Qlik Sense Engine Service in case of Qlik
Sense local installation (Qlik Sense Desktop), see Figure .

Engine En . QRS
gine .
APl Qlik Sense API Qlik Sense AP Qlik Sv.?nse
Clients — Proxy Service £ = Engine Service < = Repository

Service

Figure 3.1: APIs that can be used for communication between individual Qlik
Sense services in case of a Qlik Sense server installation.

Engine
API ik Sense _
Clients <«— = Engine Service <> File System

Figure 3.2: APIs that can be used for communication between individual Qlik
Sense services in case of a Qlik Sense local installation [17].

The difference is caused by the fact that Qlik Sense Desktop does not need
any authentication since it is intended to be used exclusively by the user on whose
machine the Qlik Sense installation runs.

It is important to mention that it is not possible to communicate with Qlik
Sense cloud instances [17]. It is because there is no API available for retrieving
metadata from Qlik Sense Business.

3Qlik Sense Proxy Service, manages the Qlik Sense authentication, session handling, and
load balancing |16].

21

Communication

The API works on the principle of exchanging messages, following the JSON-
RPC 2.q7_f] specification, between the client and the server. Each message sent
to the engine represents one request to perform an action on a particular JSON
object. This object is specified by including object’s handle in the request. If the
response returns an object, that object’s handle is included in the response [18].

The structure of messages sent to the engine has the following members [18]:

jsonrpc

Mandatory member. The version of JSON-RPC, equals 2.0.

id

Optional member. Identifier established by the initiator of the request. If
this member is not present, the RPC call is assumed to be a notification.
method

Mandatory member. Name of the method.

handle

Mandatory member. The target of the method. The member handle is not
part of the JSON-RPC 2.0 specification.

delta

Optional member. Boolean. If set to true, the engine returns delta values.
The default value is false.

Example of use:

The delta member is set to true to get the delta of the layout or the delta
of the properties of an object.

params

Optional member. Sets the parameters. The parameters can be provided
by name through an object or by position through an array. Each method
requires a different set of parameters.

return_empty

Optional member. Returns default and empty values.

cont

Optional member. Non-validating call. Is thrown if the object is not in a
validated state.

A request object can look as follows:

4A stateless, light-weight remote procedure call (RPC) protocol using JSON as a data for-
mat [12].

22

"jsonrpc": "2.0",

"id": 6 ,
"method": "DestroyChild",
"handle": 2,
"params": [

HLBOQII
]

by

The structure of messages sent from the engine has the following members [18]:

jsonrpc

Mandatory member. The version of JSON-RPC, equals 2.0.

id

Mandatory member. Identifier. This identifier must be identical to the
identifier in the request object.

result or error

Mandatory member. The member result is required on success. In case of
failure, the member error is displayed. The result member contains the data
resulting from the action requested. Can be empty or it can, for example,
return metadata of some object.

change

Optional member. Handles of the objects that have been updated.

closed

Optional member. Handles that have been released (following a remove for
example).

A response object can look as follows:

{

"jsonrpc": "2.0",
"id": 3,
"result": {
"gReturn": {
"qType": "GenericObject",
"gHandle": 5
}
1,
"change": [
5
]

23

Methods

As mentioned above, the API can be used for several different use cases which
mostly work with object structure and relations between them. The methods
provided by this API are able to retrieve, modify and create objects in the QES
which makes it very convenient for metadata extraction needed in our case.

The fact that it is not possible to get all metadata we need in one response
from the engine means that metadata of individual objects have to be extracted
in several message exchanges and the data is going to be split into several JSON
objects each containing data retrieved as a response to one message.

3.2 Objects in Qlik Sense

In this section, we are going to describe what objects are used in Qlik Sense, what
structure they create and what relations are between them.

3.2.1 Methodology

Before any analysis of metadata could be performed, we first had to find ways how
to examine what metadata we can get, what is its structure and what information
can be retrieved. APIs of BI tools or databases are usually not built to provide
nicely-structured data needed for data lineage. This is the reason why analysis is
a major part of data lineage module development when compared to, for example,
a piece of software built from scratch without any limitations or dependencies.

Since the data lineage output graph is supposed to show the structure of a
Qlik Sense application as accurately as possible to help users navigate across
it, we first had to determine what objects are present in the Qlik Sense Engine.
After we determined the objects that we could encounter in the engine, we created
approximate structure of objects - parents, children and relations between various
objects.

After we had the list of objects and their mutual relations mapped, we used
Qlik Sense Engine API Explorer, a Qlik Sense helping tool for developers, to see
which metadata is returned in responses from the engine when different requests
are sent. Once we had the object definition metadata collected we could analyze
the JSON objects and try to look for as much metadata which can be useful
for data lineage as possible. As mentioned earlier, not all information can be
retrieved and therefore we had to pay close attention to detail as some data can
be stored under non-intuitive keys or be absent altogether if some object settings
are left blank.

Qlik Sense provides Qlik Engine JSON API reference which, among other
things, defines the structure of JSON objects returned in response messages by
all methods. However, these definitions are usually very general and do not
provide the detailed information that we need. This is why manual analysis of
metadata was performed and hundreds of JSON objects were analyzed to map
JSON keys to object properties assigned via Qlik Sense’s user interface.

Below is the list of objects important for data lineage with their description,
some important properties or behavior and fields important for data lineage. We
split the objects described into two groups - data layer and presentation layer.

24

While the data layer provides an application with data defined by expressions,
presentation layer creates the structure where this data can be input. Even
though these two layers exist together, their functionality differs greatly and
therefore it makes sense to distinguish between the objects of the data layer and
the objects of the presentation layer.

3.2.2 Data Layer

There are only two data objects that Qlik Sense uses in the application - tables
and field’] Naturally, a table is a named collection of its fields and each field
belongs to exactly one table. The process that precedes the creation of tables
and fields that are used in an application is somewhat complicated, however, it
provides users with great customization options, and thanks to that, data from
almost any data source can be loaded into the application.

At the beginning of the data-loading process, there is a Load Script, which
contains instructions about what data shall be loaded, from where it shall be
fetched and what transformations have to be performed. Each data-loading action
executes this script and the tables and their fields that are present in the memory
at the end of the script execution are saved on the server in the application’s
QVF file. We describe the Load Script itself, its syntax and statements in an own
section below.

All connections to data sources are terminated at the end of the Load Script
execution and from this point on the application only works with the data that is
saved in its QVF file. The only exception to this are system fields which provide
dynamic data information, for example, values of the field $Table contains all
names of loaded tables and field $Rows contains the number of rows in the tables.

Fields in Qlik Sense are always used in visualization expressions whose syntax
is also described in a separate section below and no other data usage is available.
It is not possible to create new fields or tables after the termination of Load
Script execution, therefore the data available for use is final until data-loading is
performed again.

If a user tries to load a new table named the same as a table already loaded,
Qlik Sense automatically renames every new table, adding a suffix -table Number.
Qlik Sense automatically concatenates two tables if it detects that two tables
have the same number of fields and all of these fields have the same names unless
these tables are explicitly split.

On the other hand, if two fields in any 2 tables have the same name, the
latter is renamed into <table name>.<field name>. 1t can happen that the for-
mer field is renamed instead of the latter if Load Script is modified to explicitly
define the same name of the fields. Since Qlik Sense ensures that there are no
two fields named the same, expressions refer to the fields always by their name
and never together with their table name, as we can sometimes see in SQL (<ta-
ble name>.<field name>) unless it is the above-mentioned case, when this form
is the name of the field itself and not the field’s parent table specification.

Data flows on the Data Layer are visualized in Figure (3.3}

5 A more suitable term to use would be columns, however, Qlik Sense refers to them as fields.

25

Qlik Sense application

Tahles and Fields
resulting from
Load Script execution

Y

Data sources
(files, databases)

o| Presentation Layer
objects

Y
Y

Load Script

Y

Application's
QVF file
(data persistence)

Figure 3.3: Diagram of data flows on the Data Layer.

3.2.3 Presentation Layer

There are many objects on the presentation layer and therefore we decided to
describe the analysis outcome of each object separately. As mentioned earlier in
this chapter, presentation layer objects only use fields of the data layer in form
of visualization expressions, whose syntax is described later in this chapter.

In our analysis, we will list objects from the most elementary ones, dimensions
and measures, while gradually progressing to bigger objects ending with Sheets.
Then we will proceed to describing objects of the Stories functionality.

Dimension

Dimensions determine how the data in a visualization is grouped. For example:
total sales per country or number of products per supplier [4]. They are usually
used as the x-axis in graphs or as slices in pie charts.

A dimension can be either single-use or reused. The difference between them
is the owner of the dimension.

A single-use dimension is, as its name suggests, used one time only and this
means that once a dimension is defined, it cannot be referenced from elsewhere
and other objects do not know about its existence at all. They usually don’t have
an explicit name, even though they are provided with a unique dimension ID.
The owner of a single-use dimension is the hypercube that contains its definition.
The concept of the hypercube is described later in this section.

The single-use dimension is defined by a single field expression which prevents
it from being a drill-down dimension (a kind of dimension that has got several,
typically hierarchical, definitions, such as year-month-week and which can be
changed by the user interaction).

A reused dimension, on the other hand, is a dimension that has got its own
name and other objects can see it. The owner of this kind of dimension is the
application itself and it is not possible to share these objects across applications.
It can have several expressions defining it in case a user wants to create a drill-
down dimension. If this dimension is used in a visualization, it is referenced to
by its unique dimension ID.

Dimension object definitions can contain several properties that can be set
as expressions. Below is a list of all dimension definitions and properties with
possible expressions and properties identifying the object - ID or label.

26

e Definitions

Field definitions of dimensions. They are provided as expressions that are
used to creating them. When a reused dimension is referenced, this array of
definitions is empty. The ID of the referenced dimension and field definitions
are mutually exclusive.

e [ield Labels

An array of field labels [19]. The default value is an empty string and it
can only be changed programmatically using Qlik Sense APIs.

e Label Expression

An expression that’s result is the name of the x-axis in the graph. In case
this property is empty, the dimension’s first field definition is used as a
label.

e ID
A Qlik Sense-generated short alphabetic string defining the ID of the object.

e Saved name

The name under which the user sees the reused dimension in the user in-
terface. Empty for single-use dimensions. Does not have to be unique.

A reused dimension can not have assigned any advanced styling properties
like single-use properties. However, a reused dimension can be referenced in a
hypercube using its ID and the hypercube can extend the reused dimension with
these properties for that particular usage.

For example, a dimension used in a bar chart allows a user to limit the number
of bars displayed using a static value or an expression. This is an additional
property that is specifically based on the visualization used and cannot be stored
as a property of a reused dimension. This property, however, can extend the
referenced dimension when used in the bar chart. Any other usage of the reused
dimension will not include this property.

See Figure for a demonstration of dimension fields on a simple graph.

Measure

Measures are calculations used in visualizations [14]. The easiest way to think of
measures is the y-axis in a bar chart. A dimension typically groups data according
to the dimension’s definition and the measure object performs a calculation on
the grouped data to determine the measure of each group which is visualized in
the graph or some other visualization.

Example: we have a table of sales and cities in which sales were made. We
can define the dimension as ‘City’ and Measure as ‘Sum(Sales)’. The hypercube,
which is in charge of data preparation for visualizations, groups sales by ‘City’
and for records of each group performs calculation of the sum of sales. The height
of each graph bar is then based on the sum result of sales for the given city.

The structure of the measure object in Qlik Sense is very similar to the one of a
dimension. Measures, too, can be single-use and reused with the same behavior as

27

described for the dimension (extending reused measures in a hypercube, visibility
of other objects, visualization-specific properties) except for the fact that there is
no such thing as a drill-down measure. Each measure can have at most one field
definition and an empty definition, logically, provides no data and results in an
empty visualization.

Below is a list of properties and definitions that are included in the measure
object definition which can contain expressions and are therefore interesting in
terms of data lineage or properties which help us identify the object.

e Label

The name of the measure. If label expression is empty, it is displayed as
the measure label in the visualization (if both label and label expression
are empty, measure definition expression is used).

e Label Expression

Defines the expression that’s output is to be used as the label of the measure
in the visualization.

o Measure Definition

Defines the expression that shall be used to calculate the value of the mea-
sure.

e [Expressions

This parameter is used when cyclic measures are used, which is a func-
tionality that allows users to change measures used in visualizations while
using it. This is a functionality that was fully supported in Qlik View (an
older product of Qlik reporting ecosystem) and mostly workarounds and
own extensions are used to enable this functionality in Qlik Sense.

e Trend Lines

Trend lines are measure objects that display some data visualization based
on previous data in the visualization. For example, in a bar chart of sales
per month, we can add a trend line displaying total sales from January to
the bar representing monthly sales. This graph would then show sales bar
for e.g. March and above that a point of trend line representing sales for
January, February and March combined.

e ID

A short alphanumeric string uniquely identifying the measure.

e Saved name

The name under which the user sees the reused measure in the user interface.
Empty for single-use measures. Does not have to be unique.

Even though Qlik Sense stores the static string of the label and the expression-
defining label in two different JSON keys, there is only one field in the user
interface which is used for setting the label of measure. Qlik evaluates the value
of this field and if it matches the expression, it is stored into the key of the label

28

expression, otherwise, it is stored into the key of the label. When creating the
visualization, the program looks into label expression key and if its value is empty,
it looks into the label key’s value for determining the label of the measure. In

the case of reused measures, saved name property is used as the measure’s label
primarily.

SumiGales) SampleMeasure 188 (D

Figure 3.4: Dimension, Measures and some of their properties in a chart. 1 -
Dimension label, 2 - Dimension field labels, 3 - Two measure labels, the first one
being measure expression (when no explicit label or label expression is provided),
the other being saved name property of a reused measure.

Hypercube

Hypercubes in Qlik Sense represent extractions of the data loaded for apps. A
typical example of such data is the data needed to display a particular type
of visualization object, for instance, a bar chart. Configuration of what the
contents of a hypercube should be consists mainly of defining a set of dimensions
that should be observed by the hypercube, and a set of measures that should be
computed based on those dimensions.

The resulting hypercube is a table where the first set of columns represents
dimensions, and the second set of columns represents the measures. Each row
of the table will contain one unique combination of dimension values along with
measures computed as if those dimension values were selected .

29

Hypercube’s dimensions and measures can be used actively or they could be
defined as alternative objects. Active dimensions and measures are displayed in
the visualization that’s parent of the hypercube immediately after the visual-
ization is displayed. A user can, however, interact with the visualization and
change the dimensions and measures displayed. The options he or she has are
the alternative dimensions and measures defined in the hypercube. Once an al-
ternative measure or a dimension is picked, the visualization is redrawn to match
the currently active dimensions and measures.

Hypercube object definition only contains dimension and measure definitions
(or references to reused objects) that are active. Alternative objects are stored in
a separate hypercube object definition which is nested in the definition of the hy-
percube with the active dimension and measure definitions forming a hypercube-
in-a-hypercube structure.

User interactions do not change these two hypercubes since the changes in
the visualizations are just temporary and once the application is closed, these
changes are lost.

The definition of a hypercube has got the following items important in terms
of data lineage:

e Dimension object definitions

A list of dimension object definitions. In the case of single-use dimensions,
a complete definition is placed here (and nowhere else), including property
values. When a reused dimension is used, dimension definition expressions
are omitted and instead a dimension ID is present here that provides refer-
ence information. All other properties of a reused are specified here.

e Measure object definitions

This item has got the same meaning as the one for dimension object defi-
nitions, but it is intended for measure objects.

e Hypercube of alternative dimensions and measures

Contains dimension and measure object definitions of alternative objects.

e (Calculation condition

An expression that is evaluated before hypercube calculation is performed.
If it evaluates to false, the calculation is not performed and visualization
does not display any data. This is usually used for checking whether the
input data is valid for visualization. A custom message (which can also be
an expression) can be shown if the condition evaluates to false.

It is important to note that a hypercube does not have any name as it is more
of an aggregation and logical object (groups dimensions and measures and creates
a table for visualization) and a user may never know that this object exists at
all. The metadata structure, however, relies on this object because it separates
active and alternative dimensions and measures in visualization and creates a
useful layer between the visualization and the data-providing objects.

30

Report Item

So far we have been talking a lot about visualizations and report items are a
general term to refer to these objects across all BI tools. They can sometimes
be referred to as gauges, charts, visualizations or graphs. Report items are the
essence of BI tools since it is these objects that deliver the actual value and
without which would the tools such as Qlik Sense or PowerBI lose almost all of
their business value. It is not surprising then that visualizations are the most
complicated object in Qlik Sense.

Qlik Sense is distributed with a set of 20 standard visualizations that are usu-
ally sufficient for most users, however, in order to provide as much functionality
for the customers as possible, Qlik Sense provides APIs, briefly mentioned earlier
in this chapter, that allow users to create practically any visualization. Since the
set of custom visualizations is endless, we are not going to analyze these custom
visualizations and our focus will be set on visualizations provided in Qlik Sense
released in June 2019.

Similarly to dimensions and measures, visualization can too be reused. When
a user wishes to create a visualization that can be used more times, he or she can
create a visualization with a hypercube and all settings of the report item and
then store it as a master item, which is the name used in Qlik Sense for reused
report items. Unlike dimensions and measures, once the master item is used in
a sheet, its properties can not be changed individually. If a property is changed
in a master item, this property is changed in every single usage of it. Therefore
instead of a definition of a report item in the list of children of a sheet, there
is simply an ID of the master item that shall be used together with information
about the placement of the visualization in the sheet.

Because each visualization in Qlik Sense needs different data and allows dif-
ferent customization (for example a bar chart allows a user to set the color of all
bars and pie chart allows a user to place the legend in various locations of the
visualization), there are also differently-structured report item objects.

Nevertheless, there are some items in report item definition objects that all
report items share regardless of the visualization type.

o Title
The title of the report item that is shown at the top of the visualization
and can be an expression. If no title is provided, it is left empty.

e Subtitle
The subtitle of the report item displayed right under the title. Can be
an expression, too, and if no value is provided, it is not present in the
visualization.

e Footnote
The footnote of the report item. Same as subtitle can be an expression and
if it is empty, it is not included in the visualization.

e Reference Lines

A list of reference lines defined for the report item which can be set as ex-
pressions. Reference lines in the graph are graphical projections of targets,

31

warning points or even comparison with data from a year ago that help
comparison of current data with some preset reference value.

e Master Data

If the report item is reused, it has an additional title, description and label
expression fields defined so that a user can understand what master item he
or she is using. The title is used if label expression is not used and both of
these fields do not have to be unique. The description can also be written
using expressions.

All of the standard report item definitions have the same structure that in-
cludes the above mentioned items, a hypercube used as a data source and some
report item-specific properties except for 5 report items with a little bit different
structure - filter pane, container, map, button and textimage.

Standard Report Items

A standard report item, as mentioned above, usually only has 3 groups of fields
in its definition - common properties of a report item, such as the title, subtitle,
reference line definitions or master data in case of a reused report item, a hyper-
cube and visualization-specific properties. Bar chart, histogram, scatter plot or
waterfall chart are some of the visualizations defined in a standard way utilizing
a hypercube.

The standard report item’s properties can usually be an expression as well
as a constant value with very few being constants-only. These properties are in
most cases simple key-value pairs in the JSON definition of a visualization. A
constant value and an expression is distinguished by the fact that the expression
conforms to the syntactic rules of visualization expressions described later in this
chapter and usually start with an equals sign (=).

Coloring of a standard object is a little bit more complicated than a typical
property. Qlik Sense offers different coloring options for different visualizations,
but it is always one of these:

e Solid color coloring
This is the only coloring not important for data lineage as it is only set as
a constant value.

e Coloring by expression
Coloring of bar chart bars or pie chart slices can be defined by an expression,
for example using the height of a bar.

e Coloring by dimension
A dimension is used as the base for coloring, where different values of a
dimension have different colors. Color scheme and range can be picked and
Qlik Sense automatically colors the visualization.

e Coloring by measure

Similarly to dimension, when a measure is used for coloring, its values are
used as the base for coloring. A bar chart, for example, can be painted in a

32

blue color scheme where low bars have a lighter blue shade and the higher
the bar is, the darker blue it is.

Solid color coloring is unimportant and coloring by expression is set using
a simple key-value entry in the definition of the report item. Dimension- and
measure-based colorings, however, are stored in a special triple of values - label,
expression and type. This type is common for some object properties in Qlik
Sense which can reference a reused dimension or measure. In this case, the label
value is unused and copies the expression field value.

If the user wants to use a newly defined dimension or a measure, its definition
is saved as an expression into the expression field and the type is assigned to FX-
PRESSION. However, the user can also use an already existing reused dimension
or a measure. In this case, the field expression contains the ID of the reused ob-
ject and the type is set to LIBRARY_ITEM. If the dimension- or measure-based
coloring is not used, label and expression fields are empty strings and the type of
this triple is EMPTY.

Container

A container is a very simple structure - it contains a list of report items definitions
(or references) which can be displayed inside the container. These report items
can either be displayed statically and change based on a show condition set for
the report item or they can be changed using a tabbed bar in the top, similarly
to web browsers.

The item in the container’s definition interesting from the data lineage per-
spective is, in addition to the common report item fields, a list of report items
included (either directly defined inside or using a master item reference). A con-
tainer cannot contain another container inside of it. Each of these report items
can also have a show condition defined which prevents the report item from being
shown in the visualization if it is evaluated to false.

Filter Pane

A filter pane is a collection of dimensions that can be used for the application-wide
dimension filtering. It is quite difficult to understand the functionality easily, so a
set of figures can be used for aid. Let there be a graph showing sales per customer
per city as shown in Figure [3.5

If the user wants to filter the visualization to Baltimore, Dallas and Dresden
and customers Customer A, Customer B and Customer C, he or she can use
the sheet UI's Selections functionality or a filter pane listing all values of the
dimensions included in it (in this case City and Customer) can be provided (see
Figure .

The user can simply click on items that he or she wants to filter in or out and
graphs in the application using filtered dimensions update themselves. So if we
choose the above mentioned required filter, we can update the graph easily (see
Figure [3.7).

Despite a difficult use case, its structure is fairly simple - it uses ListBox items,
which represent dimensions in a property-limiting manner, and reused dimension
references to populate itself with relevant data entries (as seen in Figure and
transforms the user action (clicks) into selection updates.

33

Average sale per customer per city
Total orders: 96466
&M
Measures

&M M Sum(GrossSales)
W Avg(Customer)

(GrossSales), Avg(Customer)

G
- =
|
|
|
[
1
|
|
I

.,...J‘.|,..||,|..|,| ..,.l.....l.!,|\..|. ,Ili..l cll e | | Bt e
otnote

Figure 3.5: A standard bar chart used showing average sale per customer per
city.

A Filter Pane title

List of all Cities List of all Customers

Aarhus

Figure 3.6: A filter pane with two dimensions - City and Customer.

Filter pane definition contains no fields interesting in terms of data lineage
except for common report item fields and a list of ListBox definitions and reused
dimension references.

A ListBox definition, on the other hand, contains fields similar to the fields
of a dimension object definition - name, which is its label in the filter pane and
can be an expression, field definitions and field labels, which are the same as
dimension definitions and labels, and expression that is used to sort data entries
of the ListBox in the filter pane.

Map

A map is a very complex report item with many fields possibly containing ex-
pressions and therefore data flows. A map is a collection of layers that display
points, charts or lines on a map positioned according to a geographic location.
This way there can be fifteen small pie charts, each for some country or other
location on the map, each showing data limited to some area. Except for the
common report item properties, its important data flow information is located in
the above mentioned internal objects called layers.
There are 5 types of visualization layers:

e Line Layer

34

Average sale per customer per city
Total orders: 428

608k
Measures

W Sum(GrossSales)
B Avg(Customer)

400k

208k

Sum(GrossSales), Ava(Customer)

Baltimore Dallas

City

A sample footnote

AFilter Pane title ‘ w8

Q List of all Cities

Bibb Manufacturing Company

C. Hoelzle Associates

Gandalf Systems
Grumman Corporation

Information Bureau

Kat Micro Distributing

Figure 3.7: Resulting bar chart after filter pane was used.

Creates lines between pairs of points on the map.

e Density Layer

Displays a measure based on location.

e Area Layer

Paints areas (cities, counties or even countries) which are provided to it in
the hypercube.

e Point Layer
Marks points on the map based on the hypercube data.

e Chart Layer

Displays a defined chart for each location on the map using the hypercube
data.

In addition to these layers, there is another layer - the background layer. A
background layer defines how the base of the map shall look like - if it shall be a
world map, a custom map or, for example, a zoomed-in map.

Layer definitions have a very varying structure that contains many properties
where expressions can be used. These properties usually define the location, or
locations in case of the line layer, and visualization properties of the individual
layer. A triple structure consisting of label, expression and type mentioned in the
part about coloring using dimensions and measures, is used a lot in layer property
definitions.

In order to be able for a layer to provide some data to the map, it has to
contain some definition of what data shall be calculated and delivered to the

35

map object. This is why even layers, except for the background layer, have got a
hypercube defined inside of their definition objects.

Button

A button is a visualization that is useful when assistance with selections is de-
sired or navigation to sheets, stories or websites is needed. When creating a but-
ton, it can have assigned an action that is performed when a button is clicked.
Among the most important actions are bookmark application, clearing selection
or switching to a different sheet or a story.

TextImage

A textimage visualization is a very simple minor report item that is used to display
some text/image only. If it displays a text, it can be defined as an expression and
if any fields are used, they are defined in the textimage’s hypercube as dimensions
and /or measures. This object can also be a background image that is loaded from
the server’s media library. The image is set using Qlik Sense UI and does not
contain any expression, just a relative path in Qlik Sense server’s file system.

Sheet

A sheet is a top-level container in a Qlik Sense Application that contains the
report items as its children. We could find an analogy between a sheet in Qlik
Sense and a report or a dashboard in other BI tools. A report item can either
be directly defined as a sheet’s report item (therefore it is only used once in the
whole application) or it can reference a master item.

A sheet definition contains no hypercube or properties. Expressions can, how-
ever, be used in its title expression and description. In case a title expression is
not used, a static title is shown as the name of the sheet. Children of a sheet are
either nested whole definitions of report items or they can be present in form of
a reference to an ID of a Master item.

Objects until here were part of the Analysis section of Qlik Sense which can be
used for the final analysis of data, but Qlik Sense provides one other functionality
for presentation - Stories. The following four objects represent stories, although
they are often closely tied with the Analysis, especially report items.

Snapshot

A snapshot is a graphical representation of the state (type and data) of a data
object at a point in time that can be used when slides are created in data sto-
rytelling. The snapshot is a copy of the state. This means that the state of
the snapshot does not change when the state of the corresponding data object
is updated. A snapshot contains the data and the layout needed to render a
visualization object [22].

It means that a snapshot is not saved as an image, but it saved as a metadata
object the same way a visualization is, so that it is possible to render it any time.
A snapshot is always tied to a visualization in some sheet and IDs of these two
objects are contained in metadata objects of snapshots.

36

Slide Item

Snapshots are not the only objects that can be used in the storytelling feature of
Qlik Sense. A user can use text boxes, which are just static text fields, shapes, im-
ages from Qlik Sense server’s image library and sheet mirroring. In terms of data
lineage, the only interesting features for us are images since we could potentially
map an image to its source in the server’s file system and sheet mirroring.

If a user decides to use a sheet in a story, the slide item references a sheet by
ID and it is possible to interact with it during a presentation - filters can be used
to show various insights or to make visualizations more readable.

Slide

A slide is a simple collection of slide items and snapshots with placement infor-
mation. All slide items belong to one slide only and their definitions are nested
inside the definitions of their parent slide.

Story

Atop of slides, there are stories, which are slide collections. One story represents
one complete presentation with slides, effects and own name. A user can have
several stories created and can switch between them the same way he or she can
do so in case of individual sheets of an application.

There are, in addition to the above-mentioned objects that provide data and
presentation features, two other objects which do not really belong to either layer,
but their importance is severe and are used commonly - variables and bookmarks.

3.2.4 Variable

A variable in Qlik Sense is a named entity, containing a data value. When a
variable is used in an expression, it is substituted by its value or the variable’s
definition [2|. Variables are a very important feature of Qlik Sense in a way that
they can be used to create some changing behavior in combination with expres-
sions, mostly with conditional statements, or they can be used as a workaround
to create some unsupported features.

For example, variables can be used for changing the language of a Sheet. Qlik
Sense does not support multilingual sheets or stories functionality, however, since
most titles and labels support expressions, they can be styled in a way that if, for
example, a variable lang has value CZ, the expression is evaluated to the Czech
string and if it has some other value, it is evaluated to its English equivalent.
There are many examples of variable usage on the Qlik Sense community forum
and virtually anything can be achieved by the correct usage of variables and
expressions.

3.2.5 Bookmark

As mentioned several times already, Qlik Sense allows a user to create filters of
the data, whether it is using a filter pane, interacting with visualizations directly

37

or using the selection user interface. These filters can sometimes be quite complex
spanning across several table fields, dimensions or measures and it is not always
easy and fast to create them. However, if a filter is used very often, it can be
quite time-consuming and annoying to have to create a filter every time it needs
to be used.

For this purpose Qlik Sense allows users to save their filters for reuse as book-
marks and then it is very simple to apply the filter just by picking it from the
bookmark list.

A bookmark is saved using a set expression, which is described in the sec-
tion about visualization expressions, and it is always bound to a certain sheet,
referencing it by its ID, which opens when a bookmark is applied. It is possi-
ble, though, to change sheets with keeping the filter of the bookmark. It is also
possible to simply get a list of selection fields used by the bookmark.

3.3 Visualization Expressions

An expression is a combination of functions, fields, and operators. Expressions
are used to process data in the application in order to produce a result that can
be seen in a visualization. This means, for example, that instead of the title of a
visualization being a static text, it can be defined as an expression that’s result
changes according to the selections made [25].

Expressions are a very important feature of Qlik Sense defining the whole
usage of the product. If it was not for this feature, users would not be able to
load data, transform it, use in visualizations and analyze it. Typically, data is
prepared using SQL statements and the output of these statements is used in the
visualizations. However, because Qlik Sense loads and uses data in two different
steps, it uses an own expression language that makes it possible to separate these
two actions.

These expressions sometimes need to perform several calculations at the same
time and since they cannot be split into several smaller expressions, they can
become very complex and long. Qlik Sense provides an expression editor that
helps with editing, selecting valid fields and checking expression syntax.

Visualization expressions can vary in length and complexity anywhere from

1+ 1
to

=$(=
Concat (DISTINCT {<[$Field]-={$(vSelection.IgnoreFields)}>}
’If(GetSelectedCount ([’ & [$Field] & ’]) > 0, ’> & chr(39) &
’<[? & chr(39) & ’ & Concat(DISTINCT {<[$Field]={"x"} -
{’& chr(36) & ’(vSelection.IgnoreFields)} - {’ & chr(39) &
[$Field] & chr(39) & ’}>} [$Field]l, ’> & chr(39) & ’1= ,[’ &
chr(39) & ’) & > & chr(39) & ’]=>+ > & chr(39) & ’)’ , ’ & ’)
)

and even though these complex expressions are usually avoided or can be rewritten
in a more understandable and simple way, there can be some use cases when they
need to be used unedited.

38

3.3.1 General syntax

The output of an expression can be either a value that is interpreted as a string,
a logical value or as a number. This way expressions can be understood appropri-
ately in various contexts even if different value types are expected. An expression
can, for example, be interpreted as a boolean value in a conditional statement
and elsewhere can the same expression provide data for a visualization.

The Qlik Sense documentation defines the expression using the BNF|notation
accordingly:

expression ::= (constant I
expressionname |
operatorl expression I
expression operator2 expression |
function I
aggrfunction I
(expression))

where:

e constant is a string (a text, a date or a time) enclosed by single straight
quotation marks, or a number. Constants are written without thousands
separator and with a decimal point as decimal separator.

e czpressionname is the name (label) of another expression in the same chart
e operator! is a unary operator

e operator? is a binary operator

e function ::= functionname (parameters)
parameters ::= expression { , expression }

e aggrfunction ::= aggrfunctionname (parameters2)
parameters2 ::= aggrexpression { , aggrexpression }

e The number and types of parameters are not arbitrary. They depend on
the function used [25].

3.3.2 Aggregation syntax

Aggregations are used in almost every visualization. Operations such as summa-
tion, getting minimum or maximum of a set of values, these all are aggregations
and nearly every measure definition uses at least one aggregation function. They
take multiple values and return a single value based on the input. Except for
the Load statement of the load script, which is described below, aggregations can
only be used in visualization expressions.

The syntax of aggregations differs from that of general expressions and is
defined in the BNF notation followingly:

6Backus-Naur formalism

39

aggrexpression ::= (fieldref |
operatorl aggrexpression |
aggrexpression operator2 aggrexpression |
functioninaggr |
(aggrexpression))

where:
e fieldref is a field name
e operatorl is a unary operator
e operator? is a binary operator
e functionaggr ::= functionname (parameters2)

Expressions and functions can thus be nested freely, as long as fieldref is
always enclosed by exactly one aggregation function and provided the expression
returns an interpretable value, Qlik Sense does not give any error messages [25].

3.3.3 Operators

Qlik Sense provides more operators than just +, -, *, and /. They are split into
five groups [15]:
1. Bitwise operators

All bitwise operators convert (truncate) the operands to signed integers (32
bit) and return the result in the same way. All operations are performed

bit by bit. If an operand cannot be interpreted as a number, the operation
will return NULL.

Operators: bitnot, bitand, bitor, bitzor, » (shift right), « (shift left)

2. Logical operators

All logical operators interpret the operands logically and return True (-1)
or False (0) as result.

Operators: not, and, or, zor

3. Numeric operators

All numeric operators use the numeric values of the operands and return a
numeric value as result.

Operators: +, -, *, /

4. Relational operators

All relational operators compare the values of the operands and return True
(-1) or False (0) as the result.

Operators: <, <=, >, >=, =, <>, precedes, follows

In the case of precedes and follows operators, no attempt is made to interpret
values numerically and therefore:

40

)1)

) 1)

) 2)

) 2)

precedes ’ 2’ returns FALSE

precedes ’ 2’ returns TRUE

follows ’1 ’ returns FALSE

follows ’ 1’ returns TRUE

since the ASCII value of a space (") is of less value than the ASCII value
of a number.

5. String operators There are only two operators:

Concatenation (&)

String concatenation. The operation returns a text string, that consists
of the two operand strings, one after another.

Example: ’abc’ & ’def’ returns ’abcedef’
Operator like

String comparison with wildcard characters (* and 7). The operation
returns a boolean True if the string before the operator is matched by
the string after the operator.

Example:

’abc’ like ’ax’ returns True

’abc’ like ’a??bc’ returns False

There is no mention of the operator precedence in the Qlik Sense documen-
tation. However, it is possible to test the operator precedence for example in the
load script or even expressions of visualizations. Thanks to this it was possible
to determine the precedence accordingly (from highest to lowest priority):

1.

2.

10.

terms inside parentheses

unary minus

. bitnot

. bitand

», « (right and left shift)

. multiplication and division

. addition and subtraction

like, & (string concatenation)

. bitor

bitxor

41

11. comparisons
12. not

13. and

14. or

15. xor

16. left to right

Multiple operators in a position mean that the operations are executed from
left to right, for example, 2 - 1 + 8 means that the addition is preceded by the
subtraction.

3.3.4 Functions

Qlik Sense offers a very large set of approximately 400 functions [7]. Some func-
tions can only be used in the load script, the visualizations or both. It makes
no sense to describe these functions or even their groups (of which there is 25)
individually. In general, almost everything is possible using the functions, there
are numeric, monetary, range, table or conditional functions available.

Functions are used in a way that almost any other language uses them and
as were defined together with aggregation functions in the BNF notation in the
beginning of this section:

function ::= functionname (parameters)

parameters ::= expression { , expression }
aggrfunction ::= aggrfunctionname (parameters2)
parameters2 ::= aggrexpression { , aggrexpression }

3.3.5 Aggregation scope

There are usually two factors that together determine which records are used to
define the value of aggregation in an expression. When working in visualizations,
these factors are dimensional value (of the aggregation in a chart expression) and
selections. Together, these factors define the scope of aggregation [25].

If the dimension, the selection or both shall be disregarded in an expression,
TOTAL and ALL qualifiers can be used as well as set analysis.

TOTAL qualifier

The TOTAL qualifier used in an expression disregards the dimensional value
which means that the aggregation will be performed on all possible values of a
field.

The TOTAL qualifier may be followed by a list of one or more field names
within angle brackets. These field names should be a subset of the chart dimension
variables. In this case, the calculation is made disregarding all chart dimension
variables except those listed, that is, one value is returned for each combination
of field values in the listed dimension fields [25].

An example can be seen in table [3.1]

42

Year | Quarter | Sum(A) | Sum(TOTAL A) | Sum(A)/Sum(TOTAL A)

3000 3000 100%
2012 Q2 1700 3000 56,7%
2013 Q2 1300 3000 43,3%

Table 3.1: Example of the effect of TOTAL modifier (A is short for ’Amount’).

Set analysis

Set analysis inside an aggregation overrides the selection. For more information
on set analysis syntax, see the part about set expressions and set modifiers below.

TOTAL qualifier and set analysis

TOTAL qualifier and set analysis used together override both dimension and
selection.

ALL qualifier

If an ALL qualifier is used, dimensions and selection are disregarded and cannot
be overridden.

3.3.6 Set expressions and set modifiers

Before a data set is used in an expression function, this set can be additionally
changed to use modifier data for calculation. This can be performed using set
expressions.

Set expressions are expressions used for local and specific data selection con-
sisting of set modifiers. The modifier consists of one or several field names, each
followed by a selection that should be made on the field, all enclosed by angled
brackets: <>. For example: <Year={2007,2008},Region={US}> [21].

A set modifier modifies the selection of the preceding set identifier. If no set
identifier is referenced, the current selection state is implicit. There are several
ways to define the selection [25]:

e Based on another field

A simple case is a selection based on the selected values of another field, for
example <OrderDate = DeliveryDate>. This modifier will take the selected
values from DeliveryDate and apply those as a selection on OrderDate.

e Based on element sets (a field value list in the modifier)

The most common example of a set expression is one that is based on a
list of field values enclosed in curly brackets. The values are separated by
commas, for example <Year = {2007, 2008}>. If values are enclosed in
double quotation marks, these values can contain wildcards.

e Forced exclusion

Forced exclusion is only available in the AND mode in Qlik Engine API and
allows exclusion of specific values by adding a tilde before the field name.

For example, expression

43

sum({$<"Ingredient = {"*garlic*"}>} Sales)

Returns the sales for the current selection, but with a forced exclusion of
all ingredients containing the string 'garlic’.

3.3.7 Dollar expansion

Dollar-sign expansions are definitions of text replacements used in the script or in
expressions. This process is known as expansion - even if the new text is shorter.
The replacement is made just before the script statement or the expression is
evaluated. Technically it is a macro expansion.

The expansion always begins with '$(’ and ends with ’) * and the content
between brackets defines how the text replacement will be done. Dollar-sign
expansions can be used with either of [24]:

Y

e Variables
e Parameters

e Expressions

Dollar expansion using variables

Using dollar expansion with variables is the most used case. The content of the
dollar expansion is the name of the variable enclosed in single quotation marks
or with no quotation marks at all:

$(variablename)

The variable name can be preceded by the number sign (#) if the expanded
value shall be interpreted as a number instead of a string. The difference is that
the number interpretation always uses the system’s valid decimal separator while
the string interpretation always uses a comma. If the value of the variable cannot
be interpreted as a number, it is expanded as a zero instead.

The name can also be preceded by a name in curly braces which explicitly
states what state of the variable shall be used. Variables can have different values
depending dynamically on different application states (selections).

$ ({MyState} variablename) expands the variable in MyState state

Dollar expansion using parameters

If parameters are used in dollar-sign expansions, then the variable’s value must
contain formal parameter marks, such as $1, $2 and $3. When expanding the
variable, the parameters should be stated in a comma-separated list and they
replace the variable value’s marks.

Set MUL="$1%x$2’;
Set X=$(MUL(3,7)); - value of X is ’3x7’
Let X=$(MUL(3,7)); - value of X is 21

Note: Set statement stores the string value stated on the right to the equals
sign, Let statement interprets the value to the right as an expression and stores
the expression result in the variable.

44

Dollar expansion using an expression

If an expression is used in the dollar expansion, it has to start with the equals
sign and it is replaced by the result of the expression.

$(=Year(Today())); - returns the string with the current year
$(=0nly(Year)-1); - returns the year before the selected one

Finally, dollar expansion can be used to put contents of a file into the load
script or a visualization expression using the keyword include and providing a
path to the file containing text that shall be inserted.

$(include=C:\Documents\MyScript.qvs);

3.3.8 String representation

In Qlik Sense, it does not matter whether a value is a date in any format, a
number or just an array of characters, it is always represented as a string and
Qlik Sense automatically tries to cast the string to a number or a date when it
expects an input of such type. It is possible, for example, to store a string 123’
into a variable and later work with it as if it was a number without any need for
explicit casting. Number constants are written with no thousands separator and
a decimal point is used as the decimal separator [24].

To distinguish between string literals, field names and variable references, Qlik
Sense provides 4 different ways of enclosing strings which define how the string
is interpreted based on the context.

If a text is enclosed in apostrophes, it is interpreted as a string literal. If it
is enclosed in square brackets or grave accents (* ‘), it is always interpreted as a
field name.

If a string is enclosed in double quotation marks and is used outside of the
load script’s Load statement where an expression is expected then it is interpreted
as a variable reference and when the string is inside of the statement, it signals
that the string shall be perceived as a field name [24].

It is necessary to enclose the text in some kind of string marks accepted by
Qlik Sense if the string contains whitespace characters. If the string contains a
character that is used as an enclosing character at the end of the string, these
characters have to be properly escaped by using a double character in the string
(two right brackets, two double quotation marks, etc.) or a different kind of
enclosing marks is suggested.

3.4 Load Script

When working with Qlik Engine JSON API, we are capable of extracting meta-
data that describes what tables and fields are used in the application, what ob-
jects consume data and how is everything related. However, it is quite difficult
to construct the data lineage before the data is already loaded in the application.

The Engine API lets us retrieve a list of connections, which are defined sep-
arately in Qlik Sense and stored as connection strings, so that we know which
databases or file systems are used, but we cannot easily get the metadata telling

45

us if a field A in table T was loaded by loading a column from table X of a
database D1, or if it was created by loading from table Y of a database D2 while
renaming the column (see Figure .

Connection 1
Database D1

Table X ~, ik Sense application

Table T

> » Load Script p(Field F

Connection 2
Database D2

Table ¥ *’

Figure 3.8: A problem of field origin.

Without parsing and analyzing the Load Script there is no possibility of telling
the data lineage user how the data was actually created and what it actually is. A
load script takes the defined connections of an application, executes its commands
while substituting connection references in commands with actual connections
and returns a list of tables and fields which can then be used in expressions,
dimensions or measures of visualizations and other objects.

Before we continue let us mention that even though we can retrieve con-
nections from the server it can sometimes be impossible to analyze load script
because connections:

e Are not stored in the application’s QVF file and migration across servers
does not include migration of connections. Therefore these connections can
be completely missing.

e Connections can be deleted after the needed script execution was completed
and there is no problem with it since load script is not used until another
execution is requested. Any invalid state of connections and the load script
which appears when it is not executed raises no errors.

In this section, we will describe some basic syntax of the load script, important
constructions and special cases. The load script language is very complex and we
skip some parts of it which are not useful for data lineage on purpose.

3.4.1 Structure

Load script is written in a language quite similar to SQL, but it has somewhat
unique structure and constructions which make it differ from the SQL, especially
the functionality related to working with Qlik Sense Engine’s table and field
associations and QVF files.

A typical load script will commonly have these main parts:

46

Variable declarations

Subroutine definitions

Data load from data sources

Transformations of loaded data such as a field or a table renaming, a field
value mapping or a new field derivation

In the user interface of Qlik Sense dedicated to editing the Load Script, called
Data load editor, the script is split into several sections, which can be user-defined.
However, Qlik Sense Engine API provides the load script as a whole and therefore
we can work with it as a whole.

3.4.2 Statements and Keywords

Script statements and keywords are split into 3 main groups:

1. Script control statements

These statements do not perform any action and are used only as helper
statements. The statements included here are loop statements, conditionals,
subroutine definition and calling or the script exit statement.

2. Script regular statements

The most important statement group which performs all data manipulation.
A typical example of regular statements are 1oad, select and store
statements, field alias definition or table and field renaming statements.

3. Script prefixes

Prefixes are a group of many non-reserved keywords that provide additional
directive to the script executioner. The left/right/inner/outer
join is a very useful prefix as well as the first n keyword which limits
data-loading to the first n rows.

Each clause of a control statement must be kept inside one script line and
may be terminated by a semicolon or the end-of-line [21]. The syntax does not
define any limit count for nesting control statements.

Regular statements, on the other hand, may be written over any number of
lines in the script and must always be terminated by a semicolon [21].

Prefixes may be applied to applicable regular statements but never to control
statements. The when and unless prefixes can however be used as suffixes to
a few specific control statement clauses [21].

All script keywords can be typed with any combination of lower case and upper
case characters. Field and variable names used in the statements are however case
sensitive [21].

Even though there is still no final list of fields that are present in the appli-
cation, load script statements can use expressions in a very similar manner to
visualization expressions, only differing in the list of available expressions.

47

3.4.3 Keywords and identifiers

Qlik Sense does not explicitly define reserved keywords of the script language and
some tests had to be performed. Only a few of statement keywords turned out to
be reserved: call, do, for, next, elseif, sub, switchand case.

In addition to that, Qlik does not define any pattern for accepted identifiers.
The only way to see if the character is valid in Qlik Sense is by trying all options.
Moreover, some characters are forbidden as the first characters (probably to avoid
mixing with other constructs in the language), while they are allowed in the
second or latter character of the identifier. From ASCII characters, these are
allowed characters in the beginning of the identifier:

A-Z a—z#$ %71 @\]1 " _
In other identifier positions, dot and numbers are also allowed:

A-Zaz#$ %71 @@\N]1 " _0-9.

3.4.4 Paths

Some statements need to have a specified path in a filesystem, for example for
data loading and storing. Normally, this would be done by specifying the absolute
path or relative path. When Qlik Sense Load Script execution starts, it creates a
private value called the working directory, which points at a location on the server
set in server settings, by default it is in the server’s application data directory.
When a user references a file omitting path, Qlik Sense looks for the file in the
working directory. The working directory can be changed using the DIRECTORY
statement.

However, in some cases, many different filesystem locations can be needed and
since Qlik Sense is capable of connecting to cloud storage, these locations do not
even have to be on the server. For this problem, the application makes use of its
connections feature where a user can define a folder connection which contains an
absolute path on the local or a remote filesystem. When the user wants to point
to a file relatively to a folder connection, a simple connection name and relative
path needs to be used:

lib://<connectionname>/<relativepath>/<filename>

In Legacy scripting mode of Qlik Sense, this formulation could be replaced
by a string constant containing an absolute path, a path relative to the working
directory or a URL.

3.4.5 Commenting

Commenting can be done either in a way common for many programming lan-
guages:

e Single-line commentary

Begins with two slashes and includes everything until the end of the line.

48

e Multi-line commentary

Begins with a slash and asterisk characters (/*) and ends with an asterisk
followed by a slash (*/). Everything between these two marks is a com-
mentary and the application does not execute this part of the script.

In addition to these two common commentary practices, there is also a load
script statement called REM (short for remark) which interprets everything be-
tween the statement keyword and the next semicolon as a commentary and this
text is not executed.

3.4.6 Variable parts

Using the dollar expansion, which is described in the section about visualization
expressions, the Load Script can be altered. Because dollar expansion is per-
formed before the statement where the dollar expansion is executed, it is possible
to store part of the script in a variable and ’import’ it using the dollar expansion.

There is hardly any use case for this since there are control statements or
the dollar-expansion’s include construction, however, if a variable contains state-
ments and its value is expanded in the script, the statements are executed at the
place in the script where it is expanded.

At the end of this section, we would like to describe some of the most im-
portant statements which are essential for the Load Script and form elementary
functionality of it.

3.4.7 Load statement

The load statement is the most used statement of them all. It is used for loading
data from 6 different sources and its BNF definition is:

LOAD [distinct] fieldlist
[(from file [format-spec] |
from field fieldassource [format-spec] |
inline data [format-spec] |
resident table-label |
autogenerate size |
extension pluginname.functionname([script] tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

The structure of the load statement is very similar to the structure of a com-
mon SQL statement - there is a list of loaded fields, a data source, a where clause,
a grouping clause and an ordering clause. Fieldlist is a comma-separated list
of fields that shall be loaded from the source. New fields can be renamed using
the keyword as:

source_table field name as field name_in new_table

Individual data sources are:

49

. From file

From is used if data should be loaded from a file using a folder or a web file
data connection. The source file is specified using the path in the format
mentioned above.

. From field

From_field is used if data should be loaded from a previously loaded field.
fieldassource ::= (tablename, fieldname)

The field is the name of the previously loaded tablename and fieldname.

. Inline data

Inline is used if data should be typed within the script, and not loaded from
a file.

Data entered through an inline clause must be enclosed by double quotation
marks or by square brackets. The text between these is interpreted in the
same way as the content of a file. Additionally, format specification defines
what is the delimiter between row values, by default it is a comma, but it
can also be whitespace characters or any other character. Newline character
defines a new row.

. Resident

Resident is used if data should be loaded from a previously loaded table.
The tablename defines the name of the table from which the data shall be
loaded.

. Autogenerate

Autogenerate is used if the new data shall be generated automatically by
Qlik Sense and its parameter size defines how many rows shall be generated.

. Extension

Extension is used for loading data from analytic connections, usually using
Python or R languages.

There is one additional usage of the load statement which is loading from
a succeeding table. It is used when the current statement shall use the table
that is returned by the 1oad or select statement that succeeds it. Qlik Sense,
for example, generates a succeeding 1oad when there is a select statement
loading data from a database and the fields loaded are renamed. Qlik Sense then
retrieves the table from the database with the original field names and uses the
load statement to rename these fields. Example:

LOAD [fieldl] as [newNamel],

[field2];

SELECT fieldl, field2 from sch.tablel;

The example above loads fields field! and field2 from tablel and fields in the
resulting table are named newNamel and field2.

90

3.4.8 Select statement

A select statement is a pure-SQL statement that returns the data fetched
from the database as a table that can be directly used in Qlik Sense. Its syntax
depends on the SQL dialect used by the driver that is used to communicate with
the database. Qlik Sense never evaluates these statements on the server, it only
sends the SQL select query to the driver and waits for the data to be delivered
back from the database.

There are many statement prefixes which are used exclusively with the load
and select statements as these two statements are practically the only ones that
load data while providing some flexibility.

3.4.9 SQL statement

The SQL statement is very similar to the select statement except that the SQL
statement can contain any SQL query, for example, an INSERT or an UPDATE
statement. Everything between the SQL keyword and the next semicolon is sent
to the driver and it is not evaluated by the application just like it is done in the
case of the select statement.

Since the SELECT statement is an SQL statement, the following are equal:

SELECT * FROM t1;
SQL SELECT * FROM t1;

However, the SQL statement does not support all the prefixes that the select
statement does and therefore it does not provide as much flexibility and cus-
tomization which can be sometimes required by the user.

Load, select and SQL statements can be preceded with a name tag:

tag_name:
LOAD, SELECT or SQL statement

The tag_name sets the name of the new table in Qlik Sense. If no tag is set for
the statement, the resulting table is either used by the preceding 1oad statement
or the table is dropped.

3.4.10 Store statement

This statement creates an explicitly named QVD, CSV, or TXT file where a table
is stored. The statement can only export fields from one data table. If fields from
several tables are to be exported, an explicit join must be made previously in the
script to create the data table that should be exported [21]. Statement definition:

Store [fieldlist from] table into filename [format-spec]

Store statement is mostly used in the data preparation Qlik Sense applica-
tions. Sometimes it is not desired to load all application data every time data
loading is launched. It can either be because data sets loaded from some tables
are too large and it takes too much time to load and transform or the data is no
longer available in the database. For this purpose, a user usually creates several
data preparation applications which can be updated independently and all their
output is then aggregated in one presentation application which only loads the
QVD, CSV or TXT files prepared by other Qlik Sense applications.

51

3.4.11 Rename statement

The rename statement changes the name of fields or tables provided. Two fields
cannot be renamed to have the same name. Additionally, fields or tables can be
renamed using a rename mapping.

A rename mapping is a table with two columns where the first column of each
row defines the name of the old field or table which shall be renamed and the
second column defines the new name of the field or table. It is not necessary to
provide the source table name of the renamed field since all field names in Qlik
Sense are unique.

3.4.12 Drop statement

The drop statement removes listed fields or tables from the script memory and
these tables or fields are not available for further actions in the load script. Logi-
cally, these tables and fields are not present in the load script output either (and
therefore cannot be used in expressions).

3.5 Required Features of the Qlik Sense Scanner

From the analysis above it is clear that to create a MANTA Flow scanner mod-
ule which would analyze all data flows in Qlik Sense is beyond the scope of this
thesis. For this reason, we consulted MANTA stakeholders to determine what
features are essential for the minimum viable product (MVP), which is the prod-
uct which only contains essential features that satisfy the first customers and
provides feedback needed for further development.

The features which were agreed to be included in the MVP are:

e Metadata extraction from the Qlik Sense Desktop server

The scanner module has to be able to connect to the local Qlik Sense
Desktop and extract the metadata needed for metadata analysis and data
flow generation.

e Metadata resolving
Reconstruct the hierarchy of objects similar to the one used in Qlik Sense
from the extracted metadata. These objects need to contain all information
that will be needed in the data flow analysis.
e Data flow generation
Implement analyzer that will analyze data flows and generate data flow
graph of the following objects:
— QIlik Sense internal tables and fields
— Applications
— Sheets

— Visualizations distributed in Qlik Sense, release June 2019, except for
the Button report item

52

— Dimensions

— Measures

e Data flow detail
Analyze only direct data flows. Indirect data flows are not required in the
MVP.

e Visualization Expressions

Create a parser that will parse visualization expressions according to the
syntax defined in Qlik Sense documentation. Implement a feature that will
analyze parsed expressions and will list fields used in it.

e Load Script

Create a parser which will parse the Load Script. Implement a feature
that will analyze LOAD, SELECT, SQL, STORE, DROP and RENAME
statements, partially also CONNECT and DIRECTORY statements, and will
represent their behavior in the data lineage graph.

Analysis of the following statement parts does not need to be implemented:
— Statements where deduction would be used - values depending on data
loaded from the database or where the asterisk (*) is used.
— Load statement with the extension data source.
— Rename statement where a mapping table is used.
— Dollar expansion replacement or evaluating nested dollar expansions.

— Evaluation of expressions and substitution of expressions with their
results.

— Prefixes of LOAD, SELECT and MAP statements.

e Integration with MANTA Flow

Use Query Service, the MANTA Flow platform’s tool for creating data lin-
eage graphs of SQL queries, to connect Qlik Sense graph with database
graph nodes and Node Creator, the MANTA Flow platform’s tool for cre-
ating folder-like node structure in data lineage graphs, to connect it with
file and folder graph nodes. The Query Service and Node Creator make it
possible for MANTA Flow to connect the graph with the output of data
flow analysis of other supported technologies used by the customer.

93

4. Implementation

We are going to describe main features, solutions to technical problems and the
architecture of the scanner module in this chapter.

A typical scanner module used in the MANTA Flow platform consists of two
main parts - a connector and a data flow generator.

The connector is responsible for connecting to the server of the technology
analyzed, extracting metadata necessary for data flow analysis of defined parts
of the technology and resolving, which is in our context the processing of the
extracted metadata and creating a hierarchy of Java objects that accurately rep-
resent the objects that are going to be analyzed and only contain information
necessary for data flow analysis.

This means, that, for example, if the Qlik dimension object’s definition con-
tains information about an internal value, such as coloring hash value, which is
a purely static value with no possible table column references or other data flow
options, it does not provide any useful information for our analysis and it can be
ignored during the resolving phase.

On the other hand, if the dimension object’s definition provides the expression
used for defining the dimension, we would most definitely want to have this value
analyzed as expressions usually refer to table columns or other data sources.

A data flow generator then uses a file reader, which is a part of the connector,
and sequentially analyses each Qlik Sense application that was extracted. The
file reader uses the resolver fro creating the Java-object-represented hierarchy of
the Qlik Sense application and provides this to the data flow generator which
analyses the objects.

The output of the analysis is a graph which can be combined with the graphs
resulting from other scanner modules - a user may want to run an analysis of a
database that provides data to Qlik Sense applications and the final MANTA vi-
sualization of the graph then displays an entire data flow chart from the database
to Qlik Sense report items showing deep insights into what is actually going on.

Based on the above mentioned general structure of the majority of MANTA
scanner modules we had to implement the following artefacts:

e Connector

Extractor

— Model
Defines the interface for all classes implemented in resolver.

— Resolver
— File Reader

e Data Flow Generator

4.1 Technologies used

Because our scanner module is supposed to work on the MANTA Flow platform
with already set up environment, the choice of the technologies was relatively

o4

simple. To keep the dependency list as short as possible, we tried to use libraries
already included in the platform and use technologies that were already used in
other scanner modules (for configuration or parsing).

Java 8

Because most of the MANTA Flow code is already written in Java 8, it
was logical to implement our solution in the same language. Thanks to this
we were able to easily use already existing infrastructure provided by the
platform.

Spring

Because MANTA Flow is a Spring application, it was necessary to perform
all configuration of the scanner module in the same way as other modules.
We used Spring’s XML configuration, which is similar to other components,
and additional configuration is done using the .properties files.

ANTLR v3

ANTLR was used for writing parsers for the Load Script and the visualiza-
tion expressions. Version 3 was used because other projects use the same
version as well.

Maven

Maven was used to manage the artifacts’ dependencies as it is a very com-
mon tool suiting our needs sufficiently. Because other scanner modules also
use Maven, we were able to solve some configuration problems by compar-
ing our pom.xml files with other modules’ files in case we encountered a
problem.

JUnit 4 and Mockito

JUnit 4 was used for testing as it is a standard library when it comes to writ-
ing tests. For creating mock objects for tests when needed, we decided to
use Mockito framework mainly because of its simple interface and previous
experience.

Java-WebSocket

To communicate with the Qlik Sense server via web sockets we decided
to use the Java-WebSocket library because it was already included in the
MANTA Flow platform and it was one of very few Java web socket libraries
with a convenient license that did not require publishing our code.

4.2 Extractor

The extractor’s sole purpose is to extract Qlik Application information from the
server and save it. For each extracted application on the server, a separate folder
is created, where all data is saved into corresponding files. The application folder
structure is the following:

Root folder (application title)

95

— dimensions (each dimension in its own file named dimensionlD.json)

— masterObjects (each master object in its own file named masterObjec-
tID.json)

— measures (each measure in its own file named measurelD.json)
— sheets (each sheet in its own file named sheetID.json)

— snapshots (each snapshot in its own file named snapshotID.json)
— stories (each story in its own file named storylD.json)

— associations.json

— connections.json

— media.json

— tables.json

— wvariables.json

It was necessary to create this structure as it is not possible to, for example,
retrieve detailed information about all shared dimensions in one server response.
It is also more convenient to have one file per one dimension (or other object).
This way it is easier to work with it later in the resolver.

4.2.1 Extractor classes

Based on the content of Figure 1.1, we are going to describe what individual
classes of the extractor do or represent.

Extractor

Extraction Connection — > Extraction — > Extraction
Connection Manager Manager Task

Appitem
App J

Extractor

Qlik Server -

¥

Figure 4.1: Extractor communication with a Qlik Sense server.

Extraction Task and Extraction Scenario

In order for MANTA to be easily extensible with new scanner modules, the plat-
form uses its own scenarios and tasks. A scenario executes independent tasks and
a task is a sequence of commands that returns certain output based on the input
provided.

96

Extraction Manager

The Extraction Manager class is responsible for executing commands defined in
the Extraction Task. It can either be retrieving a list of all applications located
on the Qlik server or extracting a specific application from the server. It deals
with the top-level issues such as server timeout expiry and it is the top-level class
where all exception propagation ends.

When an application is extracted, this class is responsible for preparation of
the folder structure for saving the extracted Qlik application metadata into.

App Extractor

Performs extraction of an application. Instructs the Connection Manager with
the requests that are to be sent to the server, processes response messages and,
if they are valid, saves them.

Connection manager

Manages the communication between the Qlik Server and the extractor. It also
deals with latches used for response timeouts and checking if the responses coming
from the server are valid or not.

Extraction Connection
The web socket client class which connects to the Qlik Server. It only sends and
receives messages without any processing or checking.

App Item

A data container for exchanging Qlik-application-specifying information between
the Extraction Manager and the App Extractor. The data fields it contains are:

e Application 1D
e Application Title

e Path to the application on the server

4.2.2 Testing

Since testing of the extractor is heavily focused on dealing with various connection
situations (several different errors and problems can occur), the tests usually rely
on a successful connection to the server. If no connection is established and is
required, these tests are skipped. In case the server runs, it needs to have 2 testing
applications imported (files TestAppI.quf and Tutorial 1 App.quf, (Qlik-displayed
name is TestApp2) found in test resources). Without this testing environment
set up, testing is usually useless and most of tests are skipped.

o7

4.3 Model

As mentioned above, the model artifact is only used to define the interface pro-
vided by the classes that are used in the resolver. Since the resolver classes are,
after initialization, only data containers, their interfaces are usually only a set of
value getters. In some special cases, some setters may be included as well.

It is very important for data flow analysis to have the model fitted precisely
to the actual object structure in a Qlik application and therefore it is not possible
to simply use one model object for all Qlik Sense objects. Some model objects
have more properties, some are just containers for grouping children and some
may even be a combination of these two.

Additionally, if we create a very well-tailored model, we can be very sure about
what properties are present simply by checking the object type. This helps us to
prevent Null Pointer Exception and allows us to skip checking for null or invalid
values in many cases, making the code cleaner and less error-prone.

Qlik Sense’s object model is fairly complicated and we are going to describe
individual object groups in more detail, however, we are not going to describe
each interface method as this would be unnecessary and we are will mention
important properties in the resolver description later in this chapter, if needed.

4.3.1 Important interfaces

In this section, we are going to describe what important interfaces were designed
to provide specific functionality needed for resolver.

QlikNode

As mentioned above, we are trying to create a hierarchy - a tree - which would
start with the application node and would represent the structure of the appli-
cation. Each node shall be uniquely identified by its name, type and parent
node.

For this purpose, MANTA scanner modules use a base interface for all other
object interfaces which defines these three properties (via methods getID(), get-
Type() and getParent(). This way it is possible to set any other object in the
hierarchy as the parent. In our project, we named this interface QlikNode and all
object interfaces in the model implement it.

PropertyInterface and QlikProperty

As mentioned in the analysis part of this work, almost all Qlik Sense objects have
got some properties which can be object-unique and which can be expressions,
therefore making it possible to create data flows in the applications. In order
to make it possible to store these expressions, we created the Propertylnterface,
which provides the method to retrieve a list of object’s properties.

Each property is represented by an object implementing the QlikProperty
interface which can be seen as a standard std::pair<std::string, std::string>object
known in C4++. We could have used a Map<String, String>, however, it is more
convenient to have one object passed around and work with it later in the data

o8

flow generator. QlikProperty interface also implements the QlikNode interface
and can, therefore, be used as a child node if needed.

ColorDefinition

The coloring options of report items in Qlik Sense are a little bit more compli-
cated than the properties we commonly work with, as we described in the previous
chapter. To represent the possibility of the coloring be an expression, a library
item (a shared dimension or a shared measure reference) or empty, we created a
Qlik Triple interface which, in addition to the key and value (in this case named
FEzpression label), adds another retrievable value - an enum value of QlikTriple-
Type, which can be the above-mentioned EXPRESSION, LIBRARY ITEM or
EMPTY.
Thanks to this we later know how to process the Fxpression label value.

Reportltem

Report items in Qlik Sense have several common properties and similar behavior.
To avoid repetition in our code and to simplify the code, we created the Repor—
tItem interface that lists the common methods that are to be available across
all report item objects in our model. Additionally, it allows us to create more
specific type definitions in containers.

ReferenceObject and ReferenceReportItem

It is very common to have objects referenced in Qlik Sense. Some references are
purely ID-based and some references can even define some additional properties.
To distinguish these references we have got two different objects.

The ReferenceObject implements, in addition to the QlikNode interface, the
PropertylInterface and it can be used for references that define additional proper-
ties.

The ReferenceReportltem interface only stores the referenced report item’s
ID. It is, however, still kept as an object as it gives us, again, more flexibility in
the future development in case Qlik Sense’s interface changes and would make it
possible to add more information to the referenced report items.

From the implementation point of view, the Model artifact is not particularly
interesting mainly because no actual code is placed here except for the interface
definition.

4.4 Resolver

After we analyzed what objects, relations and properties there are in Qlik Sense
and determining how to find the information we need, we created a model that
would provide an accessing interface for other artefacts for working with Java
classes representing the Qlik Sense application structure.

With model being ready, we were able to work on the Resolver which imple-
ments all these interfaces. Resolving relies on the data extracted by the extractor
and starts with the root node, Application, which is instantiated using the QlikN-
ode values (ID, type and parent) and an additional constructor parameter - a File

99

instance which points to the directory where the extracted application metadata
is saved.

It goes over the metadata files and recursively instantiates objects which ade-
quately represent the object. It is recursive in a way that if, for example, a sheet
of an application contains several report items, a sheet’s loading process instan-
tiates the report items individually with parts of the JSON object relevant for
the report item (since JSON sheet definitions contain also definitions of the re-
port items as sub-trees). These report items can, for example, have definitions of
hypercubes nested. These hypercubes are, again, instantiated with the sub-tree
defining the hypercube and so on.

Thanks to this structure of metadata and the fact that we are able to work
with arbitrary sub-trees of JSON objects, we are able to process only the informa-
tion needed for the newly created object and all child objects take care of setting
their own values themselves during their initialization.

Therefore, a typical object used in the resolver has got:

1. Private fields where individual values of the object are stored

2. A constructor with parameters ID, type, parent and a JSON object defining
the object, optionally some special parameters

3. A private method for loading its own data which is called in the constructor
4. A private method for instantiating its own children (when needed)

5. Implemented all interface methods (usually getters) which do not change
the state object (exceptions are made in some cases)

It is important to mention that it is very important to make sure that once the
object is initialized, its state doesn’t change. This is due to the fact that we desire
that the output of the analysis is the same every time we launch resolving/data
flow generating. This essentially only means that we avoid defining any setters
and a field’s value assignment is only possible during the object initialization
(again, with some exceptions) and returning unmodifiable lists.

The resolver artifact is divided into several packages:

e cu.profinit.manta.connector.qliksense.resolver

Classes directly in the source code root are the classes that are used on
the application’s top level. These classes are the ones that are either of
general-purpose (QlikNodeImpl, QlikPropertyImpl) or they can be direct
children of the Qlik application’s object (BookmarkImpl, DimensionImpl,
Measurelmpl, SheetImpl, VariableImpl). The application class Applmpl is
also placed here.

e cu.profinit.manta.connector.qliksense.resolver.datasource

This package contains classes that represent data sources for the applica-
tion - databases, tables and fields from which Qlik Sense loads data and
also classes representing the tables, fields and derived fields present in the
application after the data-loading process is finished.

60

e cu.profinit.manta.connector.qliksense.resolver.reportitem

Classes in the reportitem package are classes used for resolving report items.
There are different classes for different report items so that it is possible
to match the object as tightly to the actual object structure as possible.
In the case of Qlik Sense, the one-size-fits-all approach cannot be applied.
There are, however, some objects used for more than one report item. We
describe them later in this section.

All Report item classes inherit from ReportItemImpl abstract class.

Apart from the report item items, some helping data structures are placed
here as well - QlikTripleImpl, ReferenceObjectImpl, MasterObjectImpl (pro-
viding master-object-specific values), ReferenceReportltemImpl and Refer-
encelLinelmpl because they are related to the visualizations and belong here.

e cu.profinit.manta.connector.qliksense.resolver.reportitem.map

The MapObject class is very special as it usually contains layer objects
that have a very complex structure with many optional parameters that
can contain expressions. Because of this, there are many objects used when
resolving maps and their layers and all these structures are placed into this
package. We describe the map object structure later.

e cu.profinit.manta.connector.gliksense.resolver.story

Classes representing the stories are placed here. They are not very complex
or important. They form a Story-Slide-Slideltems hierarchy and since we
are not going to analyze data flows in Stories in our project, we do not need
to focus on them.

e cu.profinit.manta.connector.qliksense.resolver.utils

Helper classes with purely static methods used for separation of specific
tasks and making resolved classes more readable are here. ReportltemFac-
tory and SlideltemFactory are placed here together with classes that help
with navigation across JSONObjects or loading all relevant properties based
on the visualization/object type.

4.4.1 Report Item classes

There are 6 classes representing standard Qlik Sense report items:

e CalculatedObjectimpl

A group of simple report items using the hypercube for calculating data for
displaying and visualization properties defined as expressions.

Report item types: gauge, KPI, pivot table, table, waterfall chart

e ColoredCalculatedObjectImpl

An extension of the CalculatedObjectImpl, can additionally store informa-
tion about the measure- and dimension-based report item coloring in Qlik-
TripleImpl objects.

61

Report item types: bar chart, combo chart, distribution plot, line chart,
pie chart, scatter plot, tree map. Map report item’s layers (class MapLa-
terImpl) also implement ColorDefinition interface that adds the coloring
functionality.

o AdvancedCalculatedObjectImpl

Another extension of the CalculatedObjectImpl which analyzes another hy-
percube defined in box plot and histogram JSON definitions. This hyper-
cube defines special parts of the visualizations such as box plot whiskers
and other scaling or customization elements. However, it was agreed with
the MANTA stakeholders that the prototype does not have to analyze this
additional hypercube yet. Therefore its analysis is not implemented in this
work.

Report item types: box plot, histogram

e ContainerImpl
A special report item type that stores definitions of /references to its nested
report items.

e FilterPanelmpl

A class that stores list box items and shared dimension references.

o TextImagelmpl

Contains a hypercube and a background URL string if present. If this
report item displays a calculated value as its text, it is stored as a measure
in the hypercube.

A visual representation of the Report Item class hierarchy can be seen in
Figure [4.2]

4.4.2 Map and Layers

Because Map’s layer objects differ severely and they contain many different prop-
erties that can be set as expressions, in order to precisely capture them we had
to create a class structure, which is quite difficult to understand. A Map is a
standard report item object extending the abstract ReportltemImpl class with
two additional fields - a list of 'normal’ layers and a list of background layers.

The base class for 'normal’ layers is the MapLayerLocationImpl class which is
a container for the location definition of a layer. It can be:

e Based on latitude and longitude
In this case, longitude and latitude fields are set as expressions, whose result
specifies where the layer’s points/charts shall be placed on the map.

e Based on administrative division

Administrative division can be set using expressions in four fields - Loca-
tion Field (a general expression that shall return location), Country and
Administrative Area (twice - level 1 and 2).

62

QlikNodelmpl
- parent : QlikNode
- type - String
- 1D : String

Extends

<Abstract> Reportitemimpl

- title : String

- subtitle : String

- footnote - String

- masterData : MasterObject

- isSharedFlag : boolean

- referencelines : List<Referenceline>
- properties - List=QlikProperty=

1

(" 3\
Extends Exlelnds Extends
f 1
Containerimpl FilterPanelmpl CalculatedObjectimpl
- children : List=Reportitem= - children : List=ListBoxltem= - hyperCube : HyperCube
- referencedChildren : List<ReferenceReportltem= - referencedDimensions : List<ReferenceObject=

A

4 Al
Extends Exlelnds Extends
MapObjectimpl ColoredCalculatedObjectimpl AdvancedCalculatedObjectimpl
- layers : List<MapLayer= - colorDefinitions : List<QlikTriple= - undoExcludeHypercube : HyperCube
- backgroundLayers : List=MapBackgroundLayer

Figure 4.2: Inheritance relations between classes representing a standard report
item objects of Qlik Sense.

Each 'normal’ layer contains one location definition except for the line layer
which contains two of these (for start and end points).

The MapLayerImpl class extends the MapLayerLocationImpl with properties,
color definitions, a hypercube field for storing the hypercube, which is used for
calculating for example pie charts at various points of the map, and other less
important fields. The area layer is represented with this class.

The MapCustomLayerImpl class is the extending class of the MapLayerIimpl
class and adds visualization settings field which allows a user to set size or density
settings which shall be used when applicable. Density, chart and point layers are
represented by the class.

The most complicated is the MapLineLayerImpl, which extends the MapCu-
tomLayerImpl class adding fields for defining the way how lines shall be calculated
(defining the Line geometry field or by adding another location information for
end points of the lines). Only the line layer is represented by this class.

The background layer is represented by the MapBackgroundLayerImpl class
and contains property values for the 3 modes it can be in - TMSY] WM or
Image (Image URL). Each mode provides a different way of setting up the map
background and different properties can be set, which is why there are three
mode-based property groups. These groups are represented by the Background-
LayerPropertiesImpl classes.

4.4.3 Testing

Tests are performed using resources containing JSON definitions of various objects
- from small definitions of a simple dimension or a measure to large complex

!Tile Map Service
2Web Map Service

63

structures like sheet definitions with over 130 thousand characters.

What is usually tested is, that when an object is created using a definition, all
properties load as they should. This means, that for example for a HyperCube,
all dimensions and measures should be loaded, calculation conditions are omitted
when empty, etc. For all the resolved objects, there is a special Test class (there
are a few exceptions when tests were not needed, though).

However, when it comes to testing the property loading of objects, large test
classes are created (GeneralPropertyEmptyTest, GeneralPropertyExpressionTest
and GeneralPropertyValueTest). Since JSON structure varies depending on fixed-
value/empty /expression contents of property fields, there are 3 main test classes.

1. Empty fields

This class tests all built-in visualization types with only dimensions/mea-
sures set. No properties are modified, everything is default. The purpose
of this test is to check if the property-loading does not fail on having some
JSON items missing/empty strings.

2. Value-set fields

Tests the property-loading of all properties that’s value is a number/string,
not an expression. Even though these values are useless in terms of data
flow, they are (usually) saved the same way as expressions and we will only
find out when parsing these values.

3. Expression-set fields

Tests the property-loading for expression-set properties values. These are
always strings, usually nested in qStringExpression/qValueExpression keys

of the JSON object.

To successfully run tests, it is only needed to have all resource files present
(tests/resources folder in resolver). All tests shall pass, none should be ignored
nor failed.

4.5 File Reader

The input reader implements functionality defined by the Manta abstract file
input reader. Collects all extracted applications and when requested, performs
reading of the extracted metadata to form a tree structure replicating the object
hierarchy of the read Qlik Sense application.

The File Reader is essential for the whole analysis because it is this artifact
that provides the Java objects for analysis. Without it, we would have no mech-
anism for iterating over all extracted applications, resolving them and supplying
our Data Flow Generator with. It can be said that it is the connecting link
between all our other artifacts.

4.6 Data Flow Generator

The Data Flow Generator artifact is the part of our scanner module which pro-
duces the output which can be visualized. It analyzes the Resolver output and

64

sequentially analyses all parts of the application to create as accurate data lineage
graph as possible.

4.6.1 Overview

Once we have got the Connector ready and are able to get the application in the
Java object structure from the File Reader, we can start analyzing the metadata
and create the data lineage graph.

There are essentially two major implementation tasks in this part:

1. Creating parsers for parsing the Load Script and visualization expressions

Parsers are needed for analysis of the semantic meaning of individual Load
Script statements, which lets us understand how columns used in expres-
sions were created (for example we can find out from which file a column
was loaded, how it was renamed or derived from other columns), and for
analyzing the visualization expressions. A visualization expression can con-
tain Qlik Sense field references and we want to be able to identify these
field names in an expression.

2. Implementing analyzers for individual objects

When analyzing the Qlik Sense Java-represented objects, we need to ensure
that all resolved fields are correctly input into the data lineage graph, form-
ing accurate hierarchy and when a relation between two objects or between
an object and a data field occurs, the data flow is correctly visualized. We
need to pay close attention to the consistency of the analysis, so that two
separate analyses output the same graph - this is useful for testing and
especially for MANTA’s comparing functionality. This functionality shows
differences between two analyses (for example an original and a modified
Qlik Sense application) and if we did not have consistent output, it could
be impossible to capture all changes accurately.

4.6.2 Parsers

Overview

Since the Load Script allows the usage of visualization expressions in some of its
statements, the visualization expression parser and the Load Script parser share
most parts and they only differ in the ‘entry point” of the parser and the Load
Script parser additionally uses the ElPrefizes parser grammar for parsing prefixes
of the Load and Select statements’ prefixes.

While Load Script parser is used to parse the whole Load Script as a whole,
the Expression parser can only be used for parsing a single expression. It can be,
to a certain degree, said that the Expression parser is a sub-parser of the Load
Script parser, since the Expression parser rules are a subset of the Load Script’s
rules.

There are some cases when the Qlik Sense’s Load Script processor behaves
rather strangely. For example, it sometimes allows a forgotten semicolon without
throwing an exception. Other times, there are some cases when an expression

65

evaluates to null/empty string during an invalid expression, but there is no ex-
ception thrown. Instead, the script/expression processor finishes the script with
this ‘invalid” value - a boolean expression 1 < 2 < 3 returns no value/null, while
expected the behavior would be to crash (more than one comparison operator)
or to return -1 (Qlik Sense value for ‘true’).

For this case, there are some expression evaluation ‘anomalies’ which had to
be taken into account, because even if a customer runs this semi-valid script, the
parser should not crash and therefore the rules are defined in the parser a little
bit loosely.

We used MANTA’s IMantaAstNode interface for our nodes to follow the con-
vention used in other company’s parsers and to avoid inventing the wheel. All
resulting nodes in the parsing tree are therefore implementing this interface and
can be easily used. It was not necessary to add any additional functionality to
the tree nodes as the methods provided by the interface were sufficient for us
during the analysis.

Due to the number of rules needed to cover almost whole syntax (it is probably
never going to be complete since documentation is not 100% up-to-date nor lists
all corner cases), parsers are split into several shared files and the final structure
can be seen in Figure [4.3]

ElExpressionMain EIMain

EllLexer ElExpressions ElNonReserved KW ElPrefixes

Figure 4.3: Grammars used (imported) in the Load Script parser (ElMain) and
the Expression parser (ElExpressionMain).

4.6.3 Parser grammar files

In this subsection, we are going to briefly describe what can be found in each
grammar file we created.

ElMain
e Serves as the main grammar for the Load Script parsing.

e Contains rules to recognize all documented control and regular statements.

66

e The DIRECT_QUERY statement has got a rather undocumented syntax
and only elementary rules are implemented for this statement.

e Always returns the tree with the root node of type ElLexer. AST_SCRIPT.

e INPUT: A Load Script complying with the rules of the Qlik Sense Script
Syntax.

e OUTPUT: An AST tree with the root of type ElLexer. AST_SCRIPT con-
taining AST_BLOCK nodes with individual statement sub-trees.

ElLexer
e Defines:

— AST tree node types.
— Around 400 non-reserved keywords for functions used in Qlik Sense.
— Character tokens such as bitwise shift (<<and >>) or curly brackets.

— Fragments and token definitions for parsing various identifiers, quotes-
enclosed strings or numbers as a single token.

— Rules for ignoring single- and multi-line comments.

e Hashtag-containing function names (such as date# or money#) are not
checked keywords since these keywords need to have KW _<name> as token
name, but hashtag cannot be in the token name.

e Identifier token is only implemented for the ASCII characters accepted in
Qlik Sense Load Script (which we mentioned in Section |3.4.3]).

e Starts with characters:

(LETTER | ’#> | °\$> | %> | ’2> | 2@ | °* | °]> | =
[> 21 1)

and continues with start characters or:
(DIGIT | DOT)

e Recognises 4 types of strings: apostrophe-, bracket-, double-quotation- and
grave-accent-enclosed.

e Apostrophe-enclosed strings have apostrophe escape character defined as ”
(two apostrophes).

e Double-quotation-enclosed strings have quote escape character defined as
““ (two quotation marks).

e Brackets-enclosed strings have right bracket escape character defined as |]
(two right brackets).

e These escape characters are then rewritten into a single character (imple-
mentation of the function in ElNonReserved KW).

67

ElNonReservedKW Defines:

Rules mostly used in both ElMain and ElExpressions rules.

Sets of non-reserved keywords to be used as identifiers in different contexts
(eg. SELECT statement’s table identifier cannot be the keyword WHERE).

Rules for dollar-expansion and path parsing.

Helper rules for distinguishing meaning in complex situations (statements
REM, SQL, SELECT or conditions for parsing acceptable table_identifier).

ElPrefixes Defines rules for the prefixes used before LOAD/SELECT/MAP
statements (not all prefixes can be used everywhere). These prefixes are not in
the requirements of our scanner module, however, it is necessary to parse them
to avoid parser recognition exceptions.

ElExpressions
e Contains rules for expression parsing.
e Unary/Binary operations with precedence.
e Function recognition.
e Aggregate function recognition.

e Always returns a tree with the root node of type ElLexer. AST_EXPRES-
SION.

e The last child of the root node is the original, complete expression rep-
resented as the text from the script - this is useful when providing the
expression itself as an attribute in original formatting.

ElExpressionMain

e Imports ElLezxer, ElEzpressions and ElNonReserved KW.

e Has only one rule which directly returns the output of ElEzpressions (there-
fore a tree with the root node of type ElLexer. AST_EXPRESSION).

e INPUT: A valid expression complying with the Qlik Sense expression syn-
tax.

e OUTPUT: An AST tree with the root of type ElLexer.AST _EXPRES-
SION and sub-elements matching the expression. The last child node is of
type AST_WHOLE_TEXT containing the original string representation of
the expression to be parsed.

68

Load Script Parser’s special cases

It would not make sense to comment on all parser rules defined for parsing the
Load Script since they are largely written as an interpretation of the documen-
tation with some minor changes when it turned out that the documentation was
incorrect. Instead, we decided to point out three special cases when we had to
create some workarounds.

Rule rem select statement: The statement REM is a commenting state-
ment, where all text between the REM keyword and the next semicolon is under-
stood as a comment (it is the same as putting the text in between the /* and */
marks. However, the SELECT and DECLARE statements support naming their
output tables in the format:

<new_table name>: SELECT/DECLARE statement

The new_table_name can, however, be value 'REM’ or 'SELECT” and then a
conflict occurred:

// a statement REM with content ’ : some-useless-text’
REM : some-useless-text;

// creates a table ’REM’ from the data returned by the SELECT
REM : SELECT * FROM <connection>;

We managed to solve this issue by looking farther ahead and checking what
content is behind the colon to be able to correctly evaluate what is a REM
statement and what is just a statement creating a table with an inconvenient
name.

Rules sql_statement and select_block: Because SQL and SELECT state-
ments are not evaluated by Qlik Sense, but instead by the ODBC/OLE DB/-
Custom connection providers, we only decided to store the value of the whole
statement into the AST node that represents the statement (in case of the SQL
statement we removed the "SQL’ keyword).

We are going to use these statements’ value in MANTA’s Query Service (which
analyzes SQL statements and returns data flow graphs) during the semantic anal-
ysis of the Load Script later.

Rule new line: Is used to check for the new line character. This is used for
control statements, since they can end with a new line instead of a semicolon/EOF
and not checking the new line would result in a very ambiguous grammar.

The checking for a new line is performed by looking through the ignored
characters (white spaces and new lines) and checking whether there is a new line.
If there is no new line character, the rule is not fulfilled and some other control
statement alternative needs to be used.

69

Expression Parser

The Expression parser is done based on the documentation and analysis. The
expression syntax is at the first sight very well-described, however, there always
can be some cases when the syntax exception can be undocumented or the syntax
information may be lost/forgotten due to a huge scope of the expression syntax.

4.6.4 Expression Evaluator

Before we were able to analyze the data flows in the objects, we needed to find
a way how to determine what fields are used in visualization expressions. The
AST trees output from the Visualization expression parser can be very complex
and the same node can have a different meaning in a different context (for exam-
ple different string variants have different meaning in the LOAD statement and
elsewhere, as mentioned in the previous chapter). To be able to crawl across the
tree and get this data flow information from the expressions, we implemented a
helper class named EzpressionFEvaluator.

Interface

The EzpressionFvaluator class only contains a single public static method as it
only has one purpose:

public static FlowContainer getFieldsUsed(IMantaAstNode, boolean)

The first parameter is the root of the expression tree, always has to be of type
AST_EXPRESSION; since this is the tree root node type that is returned from
the expression parser.

The second parameter is useful only in some cases when we have double quotes
used - Qlik Sense sees differences in meaning when used in a LOAD statement and
outside (plus SELECT statement, which is, however, evaluated by the OLED-
B/ODBC driver, not Qlik Sense). If set to true, LOAD statement string inter-
pretation is used, otherwise general interpretation is used.

The FlowContainer is a container of Set<String> that sorts data sources from
the expression, based on the context of the expression, into one of five categories
- direct/indirect field flows, variable references, include file paths (using dollar-
expansion syntax) and bookmarks (can be both IDs and user-assigned names).
Strings are returned in their normal form - without the quotation marks around
them. Nodes are not looked up directly to leave space for the processing method
to decide what to do with the data - sometimes it is not necessary to map Strings
to Nodes, but perhaps only storing the information as context for some later
analysis is sufficient.

Invalid input

When a null is input, an empty container is returned, however, this shall never
happen.

70

Testing

The testing is performed by calling the public static method with different AST
trees and asserting that the output (the FlowContainer object) contains the ex-
pected values and nothing else.

Graph Helper

In order to be able to work with the output graph during the analysis, MANTA
scanners use scanner-specific GraphHelper classes which provide interface for
working with the graph and making the individual analyzers simpler by grouping
the common graph methods in this class.

All Graph Helpers extends MANTA’s AbstractGraphHelper which provides
methods for adding direct/indirect data flows into the graph or for returning the
Graph object instance.

In our case, the QlikSenseGraphHelper class helps us with the following tasks:

e Mapping of shared dimension graph nodes by their ID (Dimension ID ->
graph node)

e Mapping of shared measure graph nodes by their ID (Measure ID -> graph
node)

e Mapping of shared report items (master objects) graph nodes by their ID
(Report Item ID -> graph node)

e Mapping of loaded Qlik field graph nodes by their name (field name ->
graph node)

e Providing the Application-representing and the Load-Script-representing
nodes to analyzers

e Building nodes with various parameters

e Copying nodes merging other graphs into our graph (for example when we
use MANTA’s QueryService to analyze SQL statements of the Load Script)

4.6.5 Analyzers

Analyzers are the most important part of the Data Flow Generator since they
are responsible for creating the graph which is the output of the whole analysis.
Analyzers are required to be stateless so that they produce the same output
every time they are provided the same data. Because of this, most analyzers only
contain static methods and no instantiation is possible.

The entry point of each Qlik Sense application analysis is the AppAnalyzer
which launches analyses of (in order):

1. The Load Script
2. Shared dimensions

3. Shared measures

71

4. Shared report items (master objects)

5. Sheets (with nested single-use report items, dimensions, measures etc.)

Graph Construction

The output graph is created sequentially, which means that at the beginning we
start with an empty graph and each analyzer adds its own graph nodes (vertices)
and edges according to its analysis output. The node-building, data-flow-adding,
node-copying and node-mapping is, of course, done by the GraphHelper which
we described earlier.

If we, for example, find out that a Report Item’s Dimension property uses a
field ABC, then we have to:

1. Check if there is already a node representing field ABC.
2. If it is not found, we have to create the node manually.
3. Build the node representing the Report Item (if it was not created before).

4. Build the node representing the Dimension and the Dimension Definition
(see the end of this section where we describe the graph node structure
which we use).

5. Create a new data flow from the field ABC to the Dimension Definition
node.

By adding new nodes (vertices) and data flows (edges) we produce a data
lineage graph which describes the data flows in the Qlik Sense application as
accurately as possible. It is therefore very important to implement the analyzers
correctly, so that the semantic meaning of each object and Load Script statement
is analyzed and projected into the graph properly.

Script Analyzer

The ScriptAnalyzer is used for the analysis of how data is loaded into a Qlik Sense
application. Unlike other reporting tools, which usually use ‘live’ data, Qlik Sense
performs data loading on demand and saves the fetched data locally. This means
that connection to the databases and other data sources is only performed when
a user wants it to happen and another data transfer happens again on demand.

The analyzer iterates over the Load-Script-representing AST tree and analyses
individual sub-trees representing the Load Script’s statements. For each non-
trivial statement (LOAD, SELECT, SQL, DROP, RENAME and STORE), there
is a separate statement analyzer and the minor statements are analyzed directly
in the ScriptAnalyzer class.

Each analysis is performed in a certain context - this context contains infor-
mation about the state of Qlik Sense at a certain point (loaded/available tables
and fields at the current point in the script, counters of ‘unknown’ tables used
in the output graph node names, etc.). This context is passed around in the
AppContext object, which serves as a large container for all this information.

The ScriptAnalyzer is the only instantiated analyzer because to analyze the
SQL scripts we use the MANTA’s Query Service, of which we need to keep the

72

instance reference and also we use the MANTA’s Node Creator, which helps us
with creating a folder-like structure in the output graph. These two objects are
then passed around as parameters to statement analyzers when needed.

The outcome of each statement analysis is projected into the GraphHelper’s
graph instance based on the information contained in the statement. Each state-
ment analyzer, therefore, performs a semantic analysis of the statement using
the statement’s AST tree and the result of this analysis is projected in the out-
put graph (new nodes and/or data flows) and the AppContezt - for example by
removing a table from the context when a DROP statement drops it.

It is important to note that since the requirements do not include a complete
statement analysis, statement forms where deduction would be required (asterisk
instead of listing fields for loading, using variables instead of parts of statements)
are ignored. However, code includes some preparation for this analysis which can
be implemented later.

QlikDataModel Analyzer

This is a ‘Load Script post-processor’. It takes the output of the load script
analysis (ContextTable objects in the AppContext) and compares them with the
list of tables and fields that are supposed to be the outcome (in this section
referenced as the final table and the final field) - this list contains all tables and
fields that can be later referenced in expressions in report items and/or stories.
The analyzer iterates over the list of final tables and 2 options can happen:

1. There is a Context table with the same name

e For each final field in the final table, the analyzer checks if the context
table contains such field - if it does, this field becomes the source of the
final field. Otherwise, a special Load Script’s UNKNOWN_TABLE -
SOURCE node is the source of the final field.

e If there are some fields in the Context Table which are not matched
by any final field, they are ignored - it is probably caused by a wrong
deduction during the Load Script’s semantic analysis.

2. There is NOT a Context table with the same name

e For each final field, a new node is created with one of two sources:
— UNKNOWN_TABLE_SOURCE - for tables which we don’t know

how they were created

— SYSTEM_SOURCE - for fields that are Qlik-Sense-provided (such
as $Field or $Table). These fields are generated ‘statistics fields’
and can be used in visualization expressions, but they are not
loaded from anywhere, they are provided by the server.

After each final field’s source-assignment, a derived fields analysis is launched,
which iterates over all of the final field’s derivedFields field list and creates a new
derived field node in the same table with the final field as its source (a new direct
data flow is added from the source field to the derived field).

73

ExpressionAnalyzer

The below-mentioned analyzers of the Qlik Sense objects often need to analyze
visualization expressions in form of QlikProperty, QlikTriple or String objects.
Since the interfaces they use are largely shared, we implemented a helping abstract
class FExpressionAnalyzer which analyzes the objects mentioned earlier. This
made it easier to analyze properties of the objects more easily and improved the
code readability.

Dimension and Measure Analyzers

The implementation of these analyzers is fairly simple, these analyzers simply go
through dimension/measure definitions (expressions) and create data flows start-
ing from columns created by the QlikDataModelAnalyzer ending in the definitions
themselves.

As we mentioned earlier, each dimension/measure can have some additional
properties set. These properties are put into a single Properties node since those
are usually not the data-providing properties (like definitions), but rather some vi-
sualization properties (expression-defined labels, expression-based coloring, ...).

Names for dimensions and measures are generated in a specific manner to pro-
vide both readability and uniqueness. All elements on the Presentation layer are
uniquely identified by their IDs, however, a few-letter-long alphanumeric string
does not provide any information for the user. The node names are therefore
created as a combination of a dimension’s/measure’s label expression or label
(static string) and the measure’s/dimension’s ID. This way both readability and
uniqueness are ensured.

If a dimension/measure is shared, it is put into a map in the QlikSenseGraph-
Helper for either shared measures or shared dimensions with the key being its ID
and value is the graph node of the dimension/measure.

HyperCube Analyzer

The HyperCube Analyzer simply iterates over all its measures and dimensions
and creates single-use dimensions/measures directly under the report item node
or a map layer node (since a hypercube always belongs to a calculated report
item or a map layer) and copies referenced shared dimensions/measures here (a
direct flow is created from the shared dimension/measure to the copied one).

Sheet Analyzer

The Sheet Analyzer is basically just a container for report items and the analyzer
does exactly the same thing. Creates the single-use report items in itself using
the Report Item Analyzer (see below) and copies the whole shared report item
nodes into itself.

A sheet has got two properties which can be expressions - label expression
and description, this analyzer checks them both to see if they contain expressions
and if yes, creates data flows for these properties.

The name is generated in a similar manner as in the case of dimensions/mea-
sures.

74

Report Item Analyzer

A report item is by far the most complex structure on the Presentation layer. The
expected report item structure in relation to columns/shared objects is depicted
in Figure (4.4}

App

Qlik Table Sheet (shared_objecis) Sheet
Column A I—ﬁ Dimension Report ltem
Field Definition Dimension
—>| ﬁ Field Definition
Label Expression
— >

Measure

Measure Definition

Measure
Measure Definition

Dimension
Field Definition

Label Expression

Label Expression

Trend Line (later)

Property (Dimension)

A

Measure
Notes: Measure Definition

- All shared objects (dimensions, measures and report items)
are to be nested under 'shared_objects’ sheet Label Expression

- Container visualisation type is an extra layer between a sheet
and a report item (container contains report items) Trend Line (iater)

- Map layer is an extra layer between a Report item (map) and
layers' hyper cubes Property (Measure)

- A Measure, a Dimension and a Sheet can also contain
the Property Container node (not shown to avoid repetition)

Property Container

Property (Report Item)

Figure 4.4: Node structure of dimensions, measures, report items and sheets in
the output graph.

Node names of report items are generated in a similar manner to dimensions,
measures and sheets.

The common ReportltemAnalyzer analyzes the fields of the ReportltemImpl
class (the common parent class for all report item objects), object-specific prop-
erties are analyzed separately. Because of this, report item analyzing is split into
several parts:

Calculated Object A calculated object extends the report item with a Hyper-
cube object. This is done by HyperCubeAnalyzer (see above).

In case a CalculatedObject is implementing the ColorDefinition interface, color
definition analysis is performed. Fach color definition can either use an expres-
sion or a shared dimension/measure. In the case of the latter, a given dimen-
sion/measure definition(s) only are flow-connected with the property, properties

75

of the dimension/measure are omitted as they have no effect in coloring.

Container The analysis of the Container is fairly simple as the Container
report item only forms an additional layer between a Sheet and a Report Item
(container is grouping several report items). Therefore it only creates single-use
report items as its child nodes and copies referenced report items as its children
as well.

Filter Pane The FilterPane is a collection of ListBox items that’s structure is
very similar to those of dimensions and therefore the projection of a Filter Pane
into the graph is very similar to Container (ListBoz is in this relation in the
position of a report item).

Map Object Since a map object is a rather large and complicated structure,
it has got its own analyzer class - MapReportltemAnalyzer.

This analyzer is used exclusively by ReportltemAnalyzer class and it analyzes
map’s layers since MapObject’s inherited properties are analyzed in the Repor-
tItemAnalyzer (a common method for all ReportitemImpl-extending objects) and
MapObject only has two own fields - a list of layers and a list of background
layers.

Layers have got a complicated inheritance structure, so their analysis is per-
formed by analyzing predecessor classes from the base class through intermediate
classes till derived (final) class (as described above when we talked about the
Resolver). The code is not too easy to read due to the way Qlik Sense stores data
- some expressions have got equals sign ('=") at the beginning of the expression
to distinguish between an expression and a static text, some expression are saved
without the sign at all.

In some cases (QlikTriple object), the key and the label values are the same
- depending on the property, it can be impossible to change the label, which is
then copied from the key, and the label analysis is skipped.

Text Image The TextImage analysis implementation is fairly simple since this
class only has 2 fields - a hypercube and a background image relative path.
Hypercube analysis is performed by the HyperCubeAnalyzer and path analysis
is skipped since only Qlik Sense media images can be used as background images,
URL or other forms of setting this is not possible. This may be analyzed in later
versions of the scanner module.

Node structure
The node structure created in the implemented part of the generator is the fol-
lowing;:

e Qlik Sense Application

— Load Script

x Load Script Statement
- Load Script Statement Expression

76

* Load Script Table
- Load Script Field

— Table
* Field
— Sheet

x Report Item
- Dimension
- Dimension Definition
- Property Container
- Property
- Measure
- Measure Definition
- Property Container
- Property
- Map Layer
- Dimension
- Dimension Definition
- Property Container
- Property
- Measure
- Measure Definition
- Property Container
- Property
- Property Container
- Property
- Property Container
- Property
* Dimension
- Dimension Definition
- Property Container
- Property
x Measure
- Measure Definition
- Property Container
- Property
* Property Container
- Property

4.7 Finishing Analysis
After all the analyzers finish generating the output data lineage graph, the data

flow analysis is finished and the resulting graph is post-processed and saved by
the MANTA Flow platform’s server and our scanner module’s task is finished.

7

Platform’s Viewer or FExport tools can then be used to see the visualized
interactive graph or to create and download a dump file which allows users to
share analysis outputs on different machines.

78

5. Case Study and Evaluation

In this chapter, we would like to explain how our scanner module works if we run
the extraction and data flow analysis on a real application placed on a Qlik Sense
Desktop server. We will show you how the application looks like in Qlik Sense
and how the data flow graph looks like when it is visualized in the MANTA Flow
platform.

To demonstrate the functionality, we have created an application of medium
size which loads some data from Excel Spreadsheet files and some data from
database tables and uses some of these fields in its report items. We have created
some single-use and some shared report items and dimension, so that the analysis
for data flow generator is not trivial.

5.1 Example application

Our application for testing is called my first app and to fill it with data we used
Qlik Sense sample data provided in a tutorial. Even though the data include
actual companies, entries are not based on real-world data.

One of the sheets is shown in Figure [5.1] It contains several different report
items - a bar chart, a table, a KP]E and a filter pane. The Total Profit measure,
which can be seen as the last column of the table report item, is a shared measure
and therefore when we will visualize it, it will be first shown in the sheet Shared
objects, where we group shared objects, and then a direct flow will lead to its
copy in the regular sheet.

The most costly customers

Total Cost
W 186M-<223M
¥

Total Cost

Custor il

AVg S a | es p er S a | esman ek Q Average Sale Value Profit per Sale Total Sales Total Brofit

Whole Year 1053.1926 433.85668 65534 28472701.659999

1623.4248

1.85k = -

Figure 5.1: A sheet of the demonstrated application visualized in Qlik Sense.

1676829.41

We have included different data sources in our application to demonstrate the
capability of analyzing data flows from different data sources, such as the file

Key Performance Indicator

79

system (Excel files), MS SQL and Oracle databases. To show how files are loaded
into the application, we are going to show parts of the Load Script.

1 LIB CONNECT TO [Manta_Oracle];
2

3 [OL$]:

4 SELECT ”"OLNAME” ,

5 "SQL_TEXT” |

6 "TEXTLEN” |

7 "SIGNATURE” ,

8 "HASH VALUE” ,

9 "HASH.VALUE2”

10 "CATEGORY” ,

11 "VERSION” |

12 "CREATOR”

13 "TIMESTAMP” |

14 "FLAGS”,

15 "HINTCOUNT” ,

16 "SPAREL1”,

17 "SPARE2”

18 FROM ”OUTLN”.”OL$”;

19
20 LIB CONNECT TO [OLE_DB_Manta MS SQL];
21
22 [numbers]:
23 SQL SELECT "n”
24 FROM "master”.”dbo”.”numbers” ;
25
26 [spt_monitor]:
27 LOAD
28 [lastrun],

29 [cpu_busy],

30 [io_busy] AS [io_busy—Region Code],
31 [idle],

32 [pack_received],

33 [pack_sent],

34 [connections],

35 [pack_errors],

36 [total_read],

37 [total_write],

38 [total_errors|;

39 SQL SELECT 7”lastrun”,
40 "cpu_busy”,
41 "io_busy”,
42 7idle”,
43 "pack_received”
44 "pack_sent”
45 ”connections”
46 "pack_errors”
47 "total_read”,
48 "total_write”,
49 "total_errors”

50 FROM ”master”.”dbo”.”spt_monitor”;
51

52 [Sheetl]:

53 LOAD

54 [Customer] ,

55 [Customer Number] ,
56 [Line of Business],

80

o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

80
81
82
83
84
85

[Region],

[Region Code] AS [io_busy—Region Code]
FROM [lib:// AttachedFiles/Customers. xlsx]
(ooxml, embedded labels, table is Sheetl);

[Sales data]:
LOAD
[# of Days Late],
[# of Days to Ship],
[BackOrder] ,
[Cost],
[Customer Number],
Date (Date#([Date], MM/DD/YYYY’)) AS [Date],
[GrossSales],
Date (Date#([Invoice Date], MM/DD/YYYY’)) AS [Invoice Date],
[Invoice Number],
[Item Desc],
[Ttem Number] ,
[Margin] ,
[Open Qty],
[OpenOrder] ,
[Order Number],
Date (Date#([Promised Delivery Date/, MM/DD/YYYY’)) AS [Promised
Delivery Date],
[Sales],
[Sales Qty],
[Sales Rep Number],
[SalesKey]
FROM [lib://AttachedFiles/Sales.xlsx]
(ooxml, embedded labels, table is [Sales data]);

The code snippet shows some important constructs of the Qlik’s Script lan-
guage which we described in the Analysis part of this work.

On lines 1-18, we connect to a previously defined database server. We named
this connection Manta_Oracle and to this server, we send our SELECT SQL
query. The data returned is then stored in the table $OL (line 3).

We proceed similarly on lines 20-50, which load 2 tables, numbers and spt._-
monitor. The second statement (lines 26-50) loads the table using the succeeding
LOAD statement, where the source table for the LOAD statement is the table
that is the result of the SQL SELECT statement under it. This is one of the
ways how fields can be renamed (using alias naming in the LOAD statement),
the other being a common RENAME statement.

Lines 52-60 show how a table Sheet! can be loaded from a local Excel file,
where AttachedFiles is a local file system connection (a path to a folder on the
local system). The last statement on lines 62-85 shows how a field can be de-
fined using an expression (line 79), where we modify the Promised Delivery Date
column to match our desired date format.

5.2 Extraction

Now that we have some idea of how our example application looks, we can have
a look at how does the extracted file structure look like. When we run extraction
of my first app application, the following file hierarchy is created (with relevant

81

JSON objects stored in the files:

e my first app

— bookmarks
— dimensions
*x SpjeHpu.json
— masterObjects
* 87768ea5-bb38-4aa0-9610-477c4f0c69ad.json
— measures
* uYfRu.json
— sheets

* H6cdd0f9-6366-4090-891a-691f23cfc4ab.json
x f£33d8cb-00e5-4fbd-a0d1-0dafee2de72f.json

— snapshots

— stories

— associations.json

— connections.json

— defaultFolder.json

— innerUserTables.json
— loadScript.json

— media.json

— systemFields.json

— tables.json

— variables.json

In the extracted files, we can find:
e No saved bookmarks

e 1 shared dimension

In the SpjeHpu.json file, we can find a JSON-formatted text which defines
the dimension with the ID SpjeHpu. This dimension can then be used in
visualizations without any need to define them again each time it is used.
In the report item, this object is then only referenced by its ID.

82

1 shared report item (a master object)

The file in the masterObjects directory defines an entire visualization (report
item) with all its properties, dimensions and measures. This visualization
definition can be then used in any sheet without any further configuration.

1 shared measure

Its usage is practically the same as the shared dimension’s.

2 sheet definitions

We store each sheet definition in a separate file. This way it is very easy for
us to distinguish what belongs to which sheet. Moreover, the Qlik Engine
API only provides detailed information on one sheet at the time.

No snapshots and stories

Data analysis of the Stories functionality was not included in the require-
ments and therefore we did not add any stories into the applications for the
sake of simplicity.

associations.json

A file that contains all field associations between tables that are set up by
the user. We do not use this in our analysis, however, it may be useful later.

connections.json

A list of all connections within the Qlik Sense Desktop application.

defaultFolder.json

The default folder property. When a relative file address is used without
using the [ib://connection-name/relative-path format, the relative address
is used starting in the default folder location. This can then help us when
reconstructing the absolute path.

innerUserTables.json

A list of all tables and fields loaded by the Load Script from defined sources.
Also contains a list of derived fields. This is particularly helpful when we are
comparing the result of the Load Script analysis with what is the expected
output. Thanks to this we are sure that the list of fields we are working
with during the expression evaluation is complete.

loadScript.json
The complete Load Script.

media.json

A list of all media placed on the server. In Qlik Sense, all media (images or
thumbnails) can only be used if they are included in the Qlik Sense media
library. This file lists all media files and their paths. We do not use this
information yet, but it may come handy later.

83

e systemFields.json

Supplements the innerUserTables.json file - lists all tables and their fields.
When compared to the innerUserTables.json, it does not list the derived
fields, however, it lists all system tables and system fields, which may also
be used in a visualization. If we combine these two files, we get a complete
list of all loaded or system tables and fields and their derived fields.

e tables.json

Provides detailed information about the origin of tables. This means that
we know from which connection the data was loaded, whether it was from
a file or a database etc.

e variables.json

Lists the key-expression pairs of variables defined in the application.

5.3 Analysis and visualization

Now that we have got the data extracted and know what data we have retrieved
from the server, we can have a look at how is the data visualized. We are going to
show small parts of the output graph because the whole graph spans over around
300 nodes and it would be impossible to read it in the printed version.

The figures used below are the actual output produced by our scanner module
and visualized in the Manta Flow Viewer.

5.3.1 Loading data from a data source

To show how data loading with the load script is visualized in the graph, we have
decided to show the part of the graph where the table spt_monitor is loaded. You
can find the Load Script statements used for it on lines 26-50 of the script shown
at the beginning of this chapter. The visualization of the data flow is shown in
Figure 5.2

Figure 5.2: Visualization of loading a table from a database.

As you can see in Figure , first we have a (MS SQL) database with a DBO
schema and a SPT_MONITOR table. From this table, we load the columns using
the SQL statement of the Load Script. Since this is a proper SQL query, we use
MANTA’s Query Service to analyze the query and create this part of the graph
for us. We then connect it to the Select Statement For Subsequent Load 0 table,
which represents the table that results from the SQL query.

84

This SQL statement then provides the source data to the preceding LOAD
statement (as you can see in the script). The output of the LOAD statement
is shown in the graph node named Load From Succeeding Statement (. This
statement may have its expressions different from the output field names (see
node io_busy-Region Code, that’s expression is io_busy, effectively renaming the
field using an alias in this statement).

Because the LOAD statement is preceded by a table name tag (spt_monitor),
the output of the statement is to be stored into a table named so. At this point,
the table is nested under the Load Script node, because it may be further modified
in the Load Script and in the end, it may not even be loaded into the application
at all. We will only find this information once the script’s analysis is over and we
compare our output with the expected output using the QlikDataModel Analyzer
described in the previous chapter.

5.3.2 Shared dimension

Next, we are going to focus on how shared dimensions and/or measures are visu-
alized and how it looks like when they are actually used in a report item.

We decided to show how the shared dimension SpjeHpu is visualized, as you
can see in Figure |5.3|

Figure 5.3: Visualization of a shared dimension SpjeHpu and its usage in a report
item.

The dimension definition only contains one field-using definition, the Dimen-
sion definition #1. This shared dimension is used twice, the first time in the bar
chart report item (top usage) and the second time in the Second sheet sheet, in
a map report item’s layer. In all these five places, the dimension is referenced by
its ID.

When it is used in a property expression (Map Layer properties), it is visual-
ized as a simple data flow with no more context provided (as there is not really
anything to say). When a dimension is referenced in a hypercube, we copy the
dimension definition nodes (in this case only one definition) and generate data
flows from the original node (which belongs to the shared dimension) to its copy
in the Map Layer.

This way the user knows that the shared dimension is used in these places and
if the shared object changes, all of these shared-object-using objects will change
as well.

85

5.3.3 Shared report item

As we have mentioned in the analysis, a shared dimension or a measure does not
have its other properties fixed and that is why we only copy the dimension/mea-
sure definitions when they are referenced elsewhere.

However, when it comes to the report items, no property can be changed
additionally. Because of this, we have to copy all properties of the object (all
report item child nodes). As you can see in Figure , we have got a shared
report item, a KPI, which only has a measure defined using an expression, which
is used in both Sales Data and Second sheet sheets. Because of this, the KPI
report item is completely copied into both sheets and data flows are generated
from the source to the copied nodes.

el

Measure Definition »~
= 3 my firstapp

Tech Qlik Sense
(=) [Sales Data (f33d8cb-00e5-4fbd-a0d1-0d...

Type Measure Definition]

& §E 'KPI$ & Sum(Gross Sales)/Count([Sa...
Path /Qlik Sense/my first app/Shared
Objects/KP| §' & E 2l my first app L
3um(GrossSales)/Count([Sales Rep
Number]) (KPI, 87768ea5-bb38-4aa0- =1 [Shared Objects

i+ Master Item Label Expression

9610.477c40c69ad)iAvg Sales per (=[] Second sheet (56cdd0f9-6366.4090.891a...

Salesman (_anonymoushMeasure1)

'KPI'§' & Sum{GrossSales)iCount([Sal...

Master Item Label Expression

[£ §F 'KPIS' & Sum(Gross Sales)/Count([Sa...]

Expression Sum(Sales)/Count([Sales Rep Nu " Master ltem Label Expression

@ [[]] sales Data (ff33d8cb-00e5-4fbd-a0d1-0dafe...

1 §F 'KPIS' & Sum(Gross Sales)/Count([Sale...

(= 1, Avg Sales per Salesman {_anonymo...

REL i Measure Definition
/) [ll] Second sheet (56cdd0f9-6366-4090-891a-6...

) i, Avg Sales per Salesman (_anonymou... 4 (1 §F 'KPIS' & Sum(GrossSales)/Count([Sale...

4 Measure Definition

2 &l my firstapp
= B3 Sales data-1
Bt F- Sales Rep Number

Bl Sales

(= [, Avg Sales per Salesman {_anonymo...

Bempne {0 Measure Definition

Figure 5.4: Visualization of a shared Report Item used in both application’s
sheets.

If we visualized it this way, it is clear that the report items in the sheets are
dependant on the shared report item and if anyone changes something in the
shared objects, changes shall be expected in both sheets.

Additionally, Figure5.4] also shows how our Expression Fvaluator works prop-
erly. It correctly evaluated that the measure definition expression Sum/(Sales)/
Count([Sales Rep Number/) uses both Sales and Sales Rep Number fields and
created data flows from these two fields into the definition node.

5.3.4 Sheet visualization

The last demonstration we are going to show is the complete Sheet object visu-
alization.

We have decided to use the Sales Data sheet, which we already showed in the
beginning of this chapter.

We have got four report items in the sheet - a bar chart, a KPI, a filter pane
and a table. In Figure[5.5] you can see that nodes representing these report items
are present in the graph, nested under the correct sheet. Only properties that

86

=l my fiest app

= [Sales Data (f33d8ch-Me5-4fd-20d1 Odale..

El §¥ Sale statistics for the past weeks | Table....

=l =, Week {_anoaymousDimensiont)

f fea Dimansicon definition #1

= g+ Themost costly customers (Bar Char...
b i MansureColariet . Exprassion
= T1, Total Cost {_anonymoasMeasure1)

Tes Meazure Dofinition

Bl ke Salk stattstics for tha past waaks (Tahla....
=l 11, Totsl Sales {_snomymousMeasoned)

Ot Measure Definition

=1 |1, Profit per Sale | anomymosshiennured)

Fa Mansure Dafiniilon

=1 1. Awerage Sale Value |_anonymoushe...

B e Mleasure Definition

B 3l my first app

= Al my tiest spp

1=] [Salos data-1 El [shared Objects =1 [Sales Data (f33d5ch-10c5-4Md-add1-Idafc...
——4 [E Sales Rep Mumber . -
=1 3E KPS B Sum[Gross Salea)iCownt] Sa. = 1F K § B SuimdGros a Sabes W ount] Sal..
——8 B Sales B i Master ltem Label Expresaion te I 41 Master e Lobel Expression
———& FEF Owdes Humber
- - 1= [, Awg Sales por Salesman |_ananymou. -
——{e B Margin [[1, Awg Sales per Salesman |_snomymo...
R i 1 Measura Definition
t R GavssSules {0 fa Mewsure Definition =t
t FEF Dt
o Con =147 Sake statistics for the past weeks {Toble,

(=1 h. Totad Profit ¥ fiu)

— e Miasura Dafinirinn
K Maazura Dafinitian L

FF Dete.sutoColendarWeek

1= |: Sales Data (f33dBch-00c5-4fbd-a0d 1-Odafe_

= 4 Uinamed Filter Pame (Filer Pane, Raga)

B L, Ciestramars jc51S967 748 408f 8246 ..
Tea Title

fl Ta Dimension definition #1

e
= 5l my first app

=1 [Sabes Data (f33d6ck D05 4fd-20d1-Odafe...

Bl p* The most cosily cusiomens [Bor Char, .

= 3 my first app

=1 §F The mwst costly customers (Sar Char... = Lo, Comtomer Nams (SplaHipe)

1B . DimensionColorDef - Eapression 1o Abzalutc/Relative Dimensicn Limitation
FEF Custumer —
e Dimension definition #1]
™ El [E Shared Objects /
N d
h /
\ fiq Dimension definition 81 o

Figure 5.5: Visualization of a sheet of our sample Qlik Sense application.

use a valid expression and contain a field usage are displayed, as other properties
are irrelevant in terms of data flows.

We can see that the above mentioned shared KPI is displayed here, including
its origin among the Shared Objects.

This visualization for example tells the user that if he or she removed all
tables but Sales Data-1 and Sheet1-1, nothing would change in this sheet. This
could be for example useful when redundant data is present in the application
file. Since Qlik Sense stores all the data locally, its size can be very big and take
up a lot of disk space. If unused tables or fields were deleted, space-saving could
be achieved without losing any functionality.

87

5.4 Space for improvement

Even though the prototype of the Qlik Sense scanner module works as expected
and meets the requirements defined, there is still some space for improvement
and some bugs or imperfections may occur. We list here some of the issues we
are well-aware of and which we would like to fix in the nearest future.

5.4.1 Naming conventions

During the development, we have been using the property names as defined in
the JSON objects. The keys used in theses objects were very often quite cryptic
and not very useful for a regular customer who has never seen the Qlik Sense
metadata.

As a result, there are still some properties named not very nicely, such as
DimensionColorDef (as seen in the bottom of Figure [5.4)), even though most
items have already gotten much nicer titles.

Additionally, objects have usually unique, but strange names, which are a
combination of a title expression and its ID, so a report item title 'KPI $’ &
Sum(GrossSales)/Count([Sales Rep Number]) (KPI, 87768ea5-bb38-4aa0-9610-
477c4f0c69ad) can be hard to read, even though it is necessary to ensure the
uniqueness of node names in the graph.

It is, naturally, our goal to produce a graph which is easily comprehensible
and this improvement would help users with navigation in the data flow graph
greatly. Additionally, it would be way easier for users to match graph nodes with
objects they see in their Qlik Sense application if the graph node name displayed
the same string as the Qlik Sense object it represents.

5.4.2 Redundant nodes

During our analysis, there are some cases when we have to create some nodes
in the data flow graph before we know if the node is going to be used for data
lineage or not. As a result of this, sometimes we create nodes without any data
flows (flowing in or out). These nodes should not, obviously, be present in the
output graph and shall be removed.

One example is the Title node of the filter pane report item as seen in Figure
.4l Another example can be seen in Figure 5.6l We create Properties nodes for
storing properties into, but some objects do not have any data-flow-generating
properties and as a result, these nodes are created and never used.

Luckily, the MANTA Flow platform contains a mechanism for filtering such
nodes and it is possible to easily remove them.

5.4.3 Parsing incompleteness

Even though our parsers contain around 100 complex rules, there are always cases
when it is not possible to parse the input and a parsing exception is thrown.
Because the syntax is so complex and the documentation is not always complete
and up-to-date, there can always be some cases when a parser comes across an
unexpected token and crashes.

38

[=1 =l my first app
= [] Sales Data (f33d8ch-00e5-4fbd-ald1-Ddafee?d...
E = KPIS & Sum(GrossSales)iCount{[Sales R...
Bl [h. Awvg Sales per Salesman [_anonymous...

[& Properties

[E] BE Sale statistics for the past weeks (Table, cF...

Bl [h. Total Profit (uYfRu)

[Properties

El lz. Week [_anonymousDimensionT)
[& Properties
B §E Unnamed Filter Pane (Filter Pane, Rsgs)

[E] The most costly customers (Bar Chart, Gx...

[= [l Total Cost {_anonymousMeasurel)

& Properties

Figure 5.6: A part of the output graph with redundant orphan nodes.

There is, unfortunately, nothing we can do to avoid this except for extensive
testing of all Load Scripts we can find and checking that the parsers work properly
no matter what the input is.

5.4.4 Color scheme

Coloring plays a vital role for the user when trying to distinguish between different
technologies in the MANTA Flow Viewer. Since one graph can contain several
technologies (such as the green MS SQL database nodes in Figure combined
with default black-gray Qlik Sense nodes), it is important to make it as easy as
possible for the user to navigate in often huge graphs.

For this purpose, our goal is to configure a coloring scheme that would be
Qlik-Sense-exclusive. An obvious choice would be a shade of green similar to the
one used in Qlik’s logo.

5.4.5 Extraction from Desktop distribution only

At the moment, the extraction is only possible from a local Qlik Sense server
(Qlik Sense Desktop distribution). However, in the commercial sphere, it is more
common to use the Qlik Sense Enterprise distribution, which requires advanced
authorization using either proxies or certificates.

In order for the customers to have the scanner module as useful as possible, it
is necessary to have this functionality implemented before the module is released.

89

Even though the extracted metadata is not going to be any different than the
metadata extracted from the Qlik Sense Desktop server, a different connection
behavior is to be dealt with and advanced connection configuration is going to
be necessary from the user.

90

6. Conclusion

In this project, we have developed the Qlik Sense scanner module prototype in
our work, which extracts and analyzes metadata saved on a Qlik Sense server and
produces a graph which visualizes data flows in the application. This module is
integrated in the MANTA Flow platform and can be used together with other
technology scanners already used by the platform.

To develop this module, we had to analyze the Qlik Sense thoroughly, finding
out how data is structured, what objects and relations there are between them
and how Qlik Sense works with all of this. Additionally, we had to find a way
how to retrieve the metadata since APIs do not naturally provide the metadata
in a common way and we had to retrieve it using many small server requests.

Our Data Flow Generator is now capable of analyzing some of the most im-
portant statements used in the Load Script, a script which is used for defining
how data shall be loaded into the application, and generate a graph which very
accurately visualizes what these statements do.

We have also managed to create parsers which are capable of parsing the
Load Script and all visualization expressions used in the applications and thanks
to this our Qlik Sense scanner module is able to analyze all expressions and table
column references. This helps the scanner with detecting data flows mostly on
the presentation layer and makes it a tool which can help Qlik Sense developers
greatly when creating, modifying or optimizing Qlik Sense applications.

As we have shown in the last chapter, our scanner visualizes the data flows in
such manner that all column (field) usage or transformation is clearly indicated
by the graph and it is easy to see what Qlik Sense object we are visualizing and
working with.

91

Bibliography

[1]

[10]

[11]

[12]

[13]

Business Intelligence Market Insights for 2020: What Do They Mean for
You? URL: https ://www . selecthub . com/business - intelligence/
business-intelligence-software-market-growing/. (accessed: May
04, 2020).

Creating a variable. URL: https://help.qlik. com/en-US/sense/Ap
ril2020/ Subsystems /Hub/Content / Sense Hub/Variables/create-
variable-using-dialog.htm. (accessed: May 19, 2020).

Customer Success Stories. URL: https://www.qlik.com/us/solutions/
customers/customer-stories. (accessed: May 10, 2020).

Dimensions. URL: https://help.qlik.com/en-US/sense/April2020/

Subsystems /Hub/Content /Sense _Hub/Dimensions/dimensions . htm.
(accessed: May 18, 2020).

Engines. URL: https://help.qlik.com/en-US/sense/June2019/Subsys
tems/ManagementConsole/Content/Sense_QMC/engines-overview.htm.
(accessed: May 16, 2020).

Exploring data lineage: Get a complete picture of your data flows. URL:
https://www.ibm.com/developerworks/data/library/techarticle/
dm-1001datalineageinfosphereworkbench/. (accessed: July 21, 2020).

Functions in scripts and chart expressions. URL: https://help.qlik.
com/en-US/sense/June2020/Subsystems/Hub/Content /Sense Hub/
Scripting/functions-in-scripts-chart-expressions.htm. (accessed:
July 21, 2020).

How It All Started: Patient Zero of Manta Tools. URL: https://getmanta.

com/blog/how-it-all-started-patient-zero-of -manta-tools/|
(accessed: May 11, 2020).

How to Drive Data Literacy in the Enterprise. URL: https://www.qlik.
com/us/bi/-/media/08F37D711A58406E83BA8418EB1D53CY . ashx ?ga -
link=datlitreport_resource-library. (accessed: May 04, 2020).

Hypercube. URL: https://help.qlik.com/en-US/sense-developer/
April2020/Subsystems/Platform/Content/Sense_PlatformOverview/
Concepts/Hypercubes.htm. (accessed: May 18, 2020).

Introducing Qlik Sense Enterprise. URL: https://help.qlik.com/en-US/
sense-admin/April2020/Subsystems/DeployAdministerQSE/Content/

Sense _DeployAdminister/Common/qgse- introduction . htm. (accessed:
May 10, 2020).

JSON-RPC' 2.0 Specification. URL: https://www. jsonrpc.org/specific
ation. (accessed: May 16, 2020).

MANTA Cases #3: (Not Always) Agile Development. URL: https://get
manta.com/blog/manta-cases-3-not-always-agile-development/.
(accessed: May 11, 2020).

92

https://www.selecthub.com/business-intelligence/business-intelligence-software-market-growing/
https://www.selecthub.com/business-intelligence/business-intelligence-software-market-growing/
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Variables/create-variable-using-dialog.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Variables/create-variable-using-dialog.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Variables/create-variable-using-dialog.htm
https://www.qlik.com/us/solutions/customers/customer-stories
https://www.qlik.com/us/solutions/customers/customer-stories
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Dimensions/dimensions.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Dimensions/dimensions.htm
https://help.qlik.com/en-US/sense/June2019/Subsystems/ManagementConsole/Content/Sense_QMC/engines-overview.htm
https://help.qlik.com/en-US/sense/June2019/Subsystems/ManagementConsole/Content/Sense_QMC/engines-overview.htm
https://www.ibm.com/developerworks/data/library/techarticle/dm-1001datalineageinfosphereworkbench/
https://www.ibm.com/developerworks/data/library/techarticle/dm-1001datalineageinfosphereworkbench/
https://help.qlik.com/en-US/sense/June2020/Subsystems/Hub/Content/Sense_Hub/Scripting/functions-in-scripts-chart-expressions.htm
https://help.qlik.com/en-US/sense/June2020/Subsystems/Hub/Content/Sense_Hub/Scripting/functions-in-scripts-chart-expressions.htm
https://help.qlik.com/en-US/sense/June2020/Subsystems/Hub/Content/Sense_Hub/Scripting/functions-in-scripts-chart-expressions.htm
https://getmanta.com/blog/how-it-all-started-patient-zero-of-manta-tools/
https://getmanta.com/blog/how-it-all-started-patient-zero-of-manta-tools/
https://www.qlik.com/us/bi/-/media/08F37D711A58406E83BA8418EB1D58C9.ashx?ga-link=datlitreport_resource-library
https://www.qlik.com/us/bi/-/media/08F37D711A58406E83BA8418EB1D58C9.ashx?ga-link=datlitreport_resource-library
https://www.qlik.com/us/bi/-/media/08F37D711A58406E83BA8418EB1D58C9.ashx?ga-link=datlitreport_resource-library
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/Platform/Content/Sense_PlatformOverview/Concepts/Hypercubes.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/Platform/Content/Sense_PlatformOverview/Concepts/Hypercubes.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/Platform/Content/Sense_PlatformOverview/Concepts/Hypercubes.htm
https://help.qlik.com/en-US/sense-admin/April2020/Subsystems/DeployAdministerQSE/Content/Sense_DeployAdminister/Common/qse-introduction.htm
https://help.qlik.com/en-US/sense-admin/April2020/Subsystems/DeployAdministerQSE/Content/Sense_DeployAdminister/Common/qse-introduction.htm
https://help.qlik.com/en-US/sense-admin/April2020/Subsystems/DeployAdministerQSE/Content/Sense_DeployAdminister/Common/qse-introduction.htm
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://getmanta.com/blog/manta-cases-3-not-always-agile-development/
https://getmanta.com/blog/manta-cases-3-not-always-agile-development/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Measures. URL: https://help.qlik.com/en-US/sense/April2020/Sub
systems/Hub/Content/Sense_Hub/Measures/measures.htm. (accessed:
May 18, 2020).

Operators. URL: https://help.qlik.com/en-US/sense/November2019/
Subsystems/Hub/Content/Sense_Hub/Scripting/Operators/operator
s.htm. (accessed: May 21, 2020).

Prozies. URL: https://help.qlik.com/en-US/sense/June2019/Subsys

tems/ManagementConsole/Content/Sense QMC/proxies-overview.htm.
(accessed: May 16, 2020).

Qlik Engine API. URL: https://help.qlik.com/en-US/sense-develope
r/2.0/Subsystems/EngineAPI/Content/introducing-engine—-API.htm.
(accessed: May 16, 2020).

Qlik Engine JSON API. URL: https://help.qlik.com/en-US/sense-
developer/April2020/Subsystems/EngineAPI/Content/Sense_Engine
API/introducing-engine-API.htm. (accessed: May 16, 2020).

Qlik Engine JSON API reference. URL: https://help.qlik.com/en-
US / sense - developer / November2019 / APIs / EngineAPI / index . html.
(accessed: May 18, 2020).

Qlik Sense APIs and SDKs. URL: https://help.qlik.com/en-US/sense-
developer/2.0/Content/APIs-and-SDKs.htm. (accessed: May 16, 2020).

Script syntax. URL: https://help.qlik. com/en-US/sense/Novemb
er2019 / Subsystems / Hub / Content / Sense _Hub/Scripting/script -
syntax.htm. (accessed: May 21, 2020).

Snapshot. URL: https://help.qlik.com/en-US/sense-developer/
April2020/Subsystems/Platform/Content/Sense_PlatformOverview/
Concepts/Snapshot.htm. (accessed: May 19, 2020).

Supported Technologies. URL: https : //getmanta . com/technologies/
data-integration/. (accessed: May 10, 2020).

Understanding script syntaxr and data structures. URL: https://help.
qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense _
Hub/LoadData/understand-data-structures.htm. (accessed: May 21,
2020).

Visualization expressions. URL: https://help.qlik.com/en-US/sense/
November2019/Subsystems/Hub/Content/Sense_ Hub/ChartFunctions/
visualization-expressions.htm. (accessed: May 21, 2020).

93

https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Measures/measures.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/Measures/measures.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/Operators/operators.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/Operators/operators.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/Operators/operators.htm
https://help.qlik.com/en-US/sense/June2019/Subsystems/ManagementConsole/Content/Sense_QMC/proxies-overview.htm
https://help.qlik.com/en-US/sense/June2019/Subsystems/ManagementConsole/Content/Sense_QMC/proxies-overview.htm
https://help.qlik.com/en-US/sense-developer/2.0/Subsystems/EngineAPI/Content/introducing-engine-API.htm
https://help.qlik.com/en-US/sense-developer/2.0/Subsystems/EngineAPI/Content/introducing-engine-API.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/EngineAPI/Content/Sense_EngineAPI/introducing-engine-API.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/EngineAPI/Content/Sense_EngineAPI/introducing-engine-API.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/EngineAPI/Content/Sense_EngineAPI/introducing-engine-API.htm
https://help.qlik.com/en-US/sense-developer/November2019/APIs/EngineAPI/index.html
https://help.qlik.com/en-US/sense-developer/November2019/APIs/EngineAPI/index.html
https://help.qlik.com/en-US/sense-developer/2.0/Content/APIs-and-SDKs.htm
https://help.qlik.com/en-US/sense-developer/2.0/Content/APIs-and-SDKs.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/script-syntax.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/script-syntax.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/Scripting/script-syntax.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/Platform/Content/Sense_PlatformOverview/Concepts/Snapshot.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/Platform/Content/Sense_PlatformOverview/Concepts/Snapshot.htm
https://help.qlik.com/en-US/sense-developer/April2020/Subsystems/Platform/Content/Sense_PlatformOverview/Concepts/Snapshot.htm
https://getmanta.com/technologies/data-integration/
https://getmanta.com/technologies/data-integration/
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/LoadData/understand-data-structures.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/LoadData/understand-data-structures.htm
https://help.qlik.com/en-US/sense/April2020/Subsystems/Hub/Content/Sense_Hub/LoadData/understand-data-structures.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/ChartFunctions/visualization-expressions.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/ChartFunctions/visualization-expressions.htm
https://help.qlik.com/en-US/sense/November2019/Subsystems/Hub/Content/Sense_Hub/ChartFunctions/visualization-expressions.htm

List of Figures

[2.1 Visualization of data flows of a Qlik Sense application.| 8
[2.2 An application overview user interface of the Qlik Sense Enterprise [
[client) 9
[2.3 A script-loaded table visualized in Qlik Sense’s Data model viewer.| 10
[2.4 Visualization of a sample sheet in Qlik Sense.| 11
[2.5 An example of how Qlik Sense user intertace for setting visualiza- [
[tion’s dimensions and measures looks). 12
[2.6 An example of how a data lineage graph can look |6].| 15
[2.7 A data lineage visualization example of data flows of several tech-
nologies created by the MANTA Flow platform (green - MS SQL,
orange - Oracle, blue - Informatica PowerCenter, gray - SSAS)|. . 18
2.8 'The T ow platform’s Viewer interface] 19
[3.1 APIs that can be used for communication between individual Qlik |
| Sense services in case of a Qlik Sense server installation.| 21
[3.2 APIs that can be used for communication between individual Qlik [
| Sense services in case of a Qlik Sense local installation |17].. . . . 21
[3.3 Diagram of data flows on the Data Layer.| 26
[3.4 Dimension, Measures and some of their properties in a chart. 1 - |
| Dimension label, 2 - Dimension field labels, 3 - Two measure labels, [
the first one being measure expression (when no explicit label or
label expression is provided), the other being saved name property
[of a_reused measure) 29
[3.5 A standard bar chart used showing average sale per customer per |
.................................. 34
[3.6 A filter pane with two dimensions - City and Customer.|. 34
[3.7 Resulting bar chart after filter pane was used.| 35
[3.8 A problem of field origin.|.o 46
[4.1 Extractor communication with a Qlik Sense server.| 56
[4.2 Inheritance relations between classes representing a standard re- [
| port item objects of Qlik Sense.|o o000 63
4.3 Grammars used (imported) in the Load Script parser (FlMain) |
| and the Expression parser (FElExpressionMain)| 66
[4.4 Node structure of dimensions, measures, report items and sheets [
| in the output graph.| 0. 75
[>.1 A sheet of the demonstrated application visualized in Qlik Sense.| 79
[5.2 Visualization of loading a table from a database.. 84
[5.3 Visualization of a shared dimension SpjeHpu and its usage in a [
[report item.|o 85
(5.4 Visualization of a shared Report Item used in both application’s |
[sheets) 86
[5.5 Visualization of a sheet of our sample Qlik Sense application.|. . . 87
[5.6 A part of the output graph with redundant orphan nodes.| 89

94

List of Tables

3.1 Example of the effect of TOTAL modifier (A is short for ’Amount’).| 43

95

A. Attachments

A.1 User Documentation

To run extraction and data flow analysis of our scanner module, several environ-
ment requirements need to be fulfilled:

e Java 8 needs to be installed on your computer.

e You need to have an access to a Qlik Sense server with sufficient privileges
to read and extract Qlik Sense application metadata.

e MANTA Flow has to be installed on your computer. This can be a major
problem since only customers and developers of MANTA usually have access
to this program.

A.1.1 Building the project

As we have mentioned earlier, our code is split into two main parts - the Extractor
and the Data Flow Generator. It is necessary to build both these parts separately
by running the mun clean install command in the top-level directory of each
component. However, because dependencies of our project include libraries which
are an exclusive property of MANTA, it is necessary to have access to these
libraries before the building process begins, otherwise it is not possible to build
these scanner module parts.

A.1.2 Running the Scanner Module

Once these module parts are built, they can be included in the Manta Flow
platform and after filling in relevant fields in the .properties file used by our
extractor (which defines the URL and the port of the server or user credentials),
an extraction and data flow analysis can be launched by running either _run.sh
(UNIX-like systems) or _run.bat (Windows systems) scripts.

The output of the analysis can then be visualized and examined by the Manta
Flow Viewer, as we have shown in some of the figures used in this thesis work.

Note that none of the configuration files used for integration with the Manta
Flow platform are included in the attachment as parts of these files are not entirely
created by us and also because this is a proprietary piece of software belonging

to MANTA.

A.2 Contents of the Attachment

The attachment comprises of the following items:

The figures folder, which contains figures used in this work so that the reader
can examine them in higher detail.

The source-code folder, which contains the source code of our two scanner
module parts.

The thesis.pdf, which is the PDF version of this text.

96

Attachments

~— fiqures
—— source-code
— manta-gliksense-connector
~— manta-gliksense-dataflow-generator
— README txt
— thesis pdf
— tex-source

The tez-source folder, which contains the TeX source code used for compiling
this text.

97

	Introduction
	Goals
	Glossary
	Outline

	Technologies
	Business Intelligence
	Qlik Sense
	Data Lineage
	Manta Flow platform

	Analysis of Qlik Sense
	Metadata in Qlik Sense
	Objects in Qlik Sense
	Visualization Expressions
	Load Script
	Required Features of the Qlik Sense Scanner

	Implementation
	Technologies used
	Extractor
	Model
	Resolver
	File Reader
	Data Flow Generator
	Finishing Analysis

	Case Study and Evaluation
	Example application
	Extraction
	Analysis and visualization
	Space for improvement

	Conclusion
	List of Figures
	List of Tables
	Attachments
	User Documentation
	Contents of the Attachment

