
qlikview.com

October 2012

METADATA DRIVEN QLIKVIEW
APPLICATIONS AND POWERFUL
DATA INTEGRATION

QlikView Expressor

A QlikView Technical Brief Document

Metadata Driven QlikView Applications and Powerful Data Integration | 2

Introduction

This technical brief highlights a subset of capabilities and approaches that are to be
considered when developing metadata-driven QlikView applications using QlikView
Expressor. The information provided will cover core value and benefits when using QlikView
Expressor for data preparation used by QlikView applications as compared to accessing,
transforming and loading data natively using QlikView. The technical brief is strictly to
inform QlikView developers of an alternative approach and additional functionality available
to them when developing QlikView applications for large scale QlikView deployments. It
is not meant to compare or contrast QlikView Expressor data provisioning versus native
QlikView scripting nor recommend any specific one approach.

QlikView Expressor Dataflows

Simply stated, QlikView Expressor provides a rich development studio to provision data
for QlikView and other data targets. Creating a QlikView Expressor Dataflow from a list of
graphical operations that access, transform and load data - makes it easy to see where
the data is coming from, how it is being transformed and where it is going. Property panels
guide the developer in selecting available options allowing simple configuration of most
operators. While developing a Dataflow, a layer of active metadata is defined about the
data it is describing, resulting in a reusable collection of common business definitions and
rules that can be applied across all integration and QlikView application projects. QlikView
Expressor calls this reusable collection of active metadata a Semantic Type.

Figure 1: QlikView Expressor Desktop and Dataflow loading data into QlikView

Metadata Driven QlikView Applications and Powerful Data Integration | 3

Active Metadata – Semantic Type

Metadata is defined as data about data. Active metadata can be defined as metadata in
action. This active metadata layer used in QlikView Expressor is called a Semantic Type.
Traditional Business Intelligence metadata is mostly static and limited to only describing
a few properties about the data it refers to such as data type, column name, length and
format. QlikView Expressor metadata is not static, it’s actionable. It describes common
properties on the source and target data while actively respecting data validation rules that
have been defined on its attributes.

Let’s take a simplistic example using a string column named ZIP used to store a 5 digit +4
zip code. Not only can the metadata describe the attribute using a common business term
such as PostalCode, but it can also specify a minimum and maximum string size constraint
to ensure the data length only falls within a specified range. Furthermore, it can provide a
pattern match rule using a regular expression such as \̂d{5}-\d{4}$. This will ensure that
the data flowing to QlikView will absolutely match the XXXXX-XXXX pattern. - What if
the value fails the rule(s) you might ask? A choice to set a corrective action or redirect the
record to another part of the flow is available - allowing more control on how and where the
data is to be processed.

Figure 2: QlikView Expressor Semantic Type and Edit Attribute dialog showing
constraints and corrective actions

Metadata Driven QlikView Applications and Powerful Data Integration | 4

Other examples include using an allowable list of values, setting rounding / min / max /
precision / scale / constraints on numeric values, date range validation, date formatting
and string padding / truncation. The benefit to creating active metadata such as this is that
instead of defining individual validation and redirect rules within script or within each individual
application, active metadata can be defined once and reused across all applications that
require these attributes for decision making. And by storing the metadata in the QlikView
Expressor version control repository it becomes reusable for other QlikView Expressor
projects and deployments which is especially handy in a multi-developer environment.

Figure 3 - A validation rule allowing only certain values

Metadata Driven QlikView Applications and Powerful Data Integration | 5

Reuse, Storage and Sharing

In order to speed up a project’s development and reduce its implementation time, it is
important to leverage common work components that have already been developed. Within
QlikView Expressor – common project components that can be reused across all applications
are Semantic Types, Schemas, Lookup Tables, Connections, Operators and Datascript
modules. If there are projects that use common data sources, columns, expressions and
business rules it makes absolute sense to create those elements once and share them with
other developers. QlikView Expressor provides a combination of project storage options
for its Dataflow building blocks known as artifacts. Local developers can simply choose to
use a file system workspace where all projects and artifacts are stored locally for reuse on
their system. They can enable simple sharing of their projects components by exporting
them to an archive that can be imported by another developer. A more streamlined approach
would be to use the QlikView Expressor Repository Workspace. This offers a centralized
storage and version control system for storing QlikView Expressor artifacts. Developers
can securely connect to their repository server from anywhere and check out the libraries
with the artifacts they need. Furthermore, if certain updates are needed – they can occur
in one place and be applied to all the applications easily with a simple update or check in. A
great use of the centralized Repository Workspace is to check out and reuse pre-configured
Operator Templates to apply a common set of business rules to any QlikView application.

Figure 4: Checking out a library and its artifacts from the QlikView Expressor
Repository Workspace

Metadata Driven QlikView Applications and Powerful Data Integration | 6

Reusable Business Rules and Operator Templates

Another way to provide greater time to value when using QlikView Expressor is to create
a reusable library of common business rules exposed as Operator Templates. QlikView
Expressor Dataflows use a graphical operation to build business and transformation rules
called a Transform operator. The Transform operator is an all-inclusive component used
to create new and augment existing data. It can create a collection of reusable rules that
accept incoming data attributes as inputs. Transformed data is defined in expressions
using Expression, Function and Lookup Rules created within the Transform Operator’s
Rules Editor. Rules enrich data with a variety of string, math, decision, utility and many more
functions, including the ability to lookup data from Lookup Tables. Use of the Transform
operator can be compared to creating expressions within QlikView load scripts or within UI
sheet objects; however the operator and its already created rules can be made available
as a reusable Operator Template that can be included in any QlikView Expressor dataflow.
Some examples of common transformation rules may include - definitions of metrics such
as profitability, churn rate or margin; data that combines multiple fields such as FNAME and
LNAME to make FullName; standardized formatting and masking to properly format dates,
phone numbers and social security numbers. All of the appropriate expressions to create
those desired results can be include as rules in the Transform Operator, parameterized
and made available as an Operator Template. The next developer to use that template
would simply map the input attributes to the rule parameters and map the output attributes.
Operator Templates are also commonly used to enrich incoming data with other disparate
data from Lookup Tables. A clear example of this looking up location data such as
geocoding an incoming state code; country, city, zip address etc.

Figure 5: Dataflow, Transform Operator, Rules Editor and Rule that defines a
common metric

Metadata Driven QlikView Applications and Powerful Data Integration | 7

Lookup Tables

A Lookup Table is a database table designed to serve a special, limited function within a
data integration application or group of applications. Lookup Tables are usually created from
a subset of data from a larger table or from a source designed to add data that an application
can use. For example, a Lookup Table might be created to provide department names to
data from a source that contains only department numbers. During the process of integrating
data, the Lookup Table could be read to add department names to department numbers.
The advantage of Lookup Tables is that they are stored within an Expressor Project and are
included in Deployment Packages. Access to them is thereby made easier and faster. When
their function and size are limited, accessing their data is also easy and fast. In QlikView
Expressor, Lookup Expression Rules are similar to using the ApplyMap() function that is
used with a MAPPING table created with a MAPPING LOAD statement in a QlikView load
script. However with the Lookup Expression Rules, the developer is not limited to just two
fields. Lookup Tables can have both single and composite keys and return multiple columns
from them. The developer can also specify a default value if the value being looked up is
not present. It is also possible to branch to another part of the Dataflow to perform another
step, without having to use IF THEN ELSE scripting logic. An additional benefit is the Range
Lookup feature, it makes it possible to define lookups that are constructed as numeric ranges.

Figure 6: Lookup Table flow and Lookup Expression Rule

Metadata Driven QlikView Applications and Powerful Data Integration | 8

Extending Functionality with QlikView Expressor Datascript

Business Intelligence solutions should always provide a software development kit to help
organizations create new components and extend existing functionality that is not always
available inside the box. It is impossible to have everything that everyone wants available in
a graphical business user or development interface. Leveraging a SDK allows customers
and partners the ability to create what they need when they want it without the reliance
on the software vendor. With QlikView Expressor there is an option to use a script editor
depending on the complexity of the data access or transformation needed. This functionality
is comparable to using QlikView script or building extensions for a QlikView application.
QlikView Expressor Datascript is a lightweight, fast interpreted scripting language based on
Lua. It is easy to learn and provides an extensible library of additional modules that enable
custom functionality to be defined and shared across all QlikView Expressor applications.
Datascript can also come in handy when certain file management and job control flow
capability is needed as file system, ftp and web service type modules can be made available.

Figure 7: A Datascript module that accesses, parses and flattens Facebook
generic profile data

Metadata Driven QlikView Applications and Powerful Data Integration | 9

References

QlikView Expressor Manual
http://documentation.qlikview.com/expressor/3.7/expressor_3.htm

QlikCommunity QlikView Expressor Documents
http://community.qlikview.com/community/qlikview_expressor?view=documents

Lua
http://www.lua.org/

http://en.wikipedia.org/wiki/Lua_(programming_language)

© 2012 QlikTech International AB. All rights reserved. QlikTech, QlikView, Qlik, Q, Simplifying Analysis for Everyone, Power of Simplicity, New Rules, The Uncontrollable Smile and
other QlikTech products and services as well as their respective logos are trademarks or registered trademarks of QlikTech International AB. All other company names, products
and services used herein are trademarks or registered trademarks of their respective owners. The information published herein is subject to change without notice. This publication
is for informational purposes only, without representation or warranty of any kind, and QlikTech shall not be liable for errors or omissions with respect to this publication. The only
warranties for QlikTech products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should
be construed as constituting any additional warranty.

