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  The animal on the cover of Google BigQuery: The Definitive Guide is a Masai ostrich (Struthio camelus massaicus), a subspecies of the common ostrich—the largest bird in the world. They can be found grazing along the open plains and grassy savannas of Eastern Africa.


  The Masai ostrich measures between 7–9 feet tall, and although it has a wingspan of 6.5 feet, it cannot fly. Ostriches are well adapted to their flightlessness: though the filaments of their feathers grow in separately, and can’t be hooked together to create airfoils (as happens in flighted birds), ostrich wings remain useful in providing lift and stabilization when they make evasive maneuvers around predators. The ostrich has long, powerful legs that can propel it to maximum speeds of 45 miles per hour, making it the fastest bird on land as well as the fastest two-legged animal. 


  The males are characterized by black plumage—with some white around the wings and tail—that contrast with their reddish neck and legs (which get brighter during mating). Females, on the other hand, are mostly brown and grey. And while most birds have four toes, the Masai ostrich only has two, one of which almost resembles a hoof. They travel in nomadic herds of up to 50 birds that can often include other grazing animals, such as antelopes or zebras.


  There is popular belief that when in danger, the ostrich will bury its head in sand as a defense mechanism. This myth is thought to have originated from the writings of Pliny the Elder, who may have actually been observing them ingesting sand and pebbles (which help them to digest their food since they have no teeth). Another theory is that he may have seen them rotating their eggs during incubation, which they keep buried in the sand. In any case, when threatened, the Masai ostrich will either run away or lower its body toward the ground. In extreme situations they will fight back, and have even been capable of killing lions.


  Many of the animals on O’Reilly covers are endangered; all of them are important to the world.


The cover illustration is by Jose Marzan, based on a black and white engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.




Chapter 1. What Is Google BigQuery?



Data Processing Architectures


Google BigQuery is a serverless, highly scalable data warehouse that comes with a built-in query engine. The query engine is capable of running SQL queries on terabytes of data in a matter of seconds, and petabytes in only minutes. You get this performance without having to manage any infrastructure and without having to create or rebuild indexes. 


BigQuery has legions of fans. Paul Lamere, a Spotify engineer, was thrilled that he could finally talk about how his team uses BigQuery to quickly analyze large datasets: “Google’s BigQuery is *da bomb*,” he tweeted in February 2016. “I can start with 2.2Billion ‘things’ and compute/summarize down to 20K in < 1 min.” The scale and speed are just two notable features of BigQuery. What is more transformative is not having to manage infrastructure because the simplicity inherent in serverless, ad hoc querying can open up new ways of working.


Companies are increasingly embracing data-driven decision making and fostering an open culture where the data is not siloed within departments. BigQuery, by providing the technological means to enact a cultural shift toward agility and openness, plays a big part in increasing the pace of innovation. For example, Twitter recently reported in its blog that it was able to democratize data analysis with BigQuery by providing some of its most frequently used tables to Twitter employees from a variety of teams (Engineering, Finance, and Marketing were mentioned).


For Alpega Group, a global logistics software company, the increased innovation and agility offered by BigQuery were key. The company went from a situation in which real-time analytics was impossible to being able to provide fast, customer-facing analytics in near real time. Because Alpega Group does not need to maintain clusters and infrastructure, its small tech team is now free to work on software development and data capabilities. “That was a real eye opener for us,” says the company’s lead architect, Aart Verbeke. “In a conventional environment we would need to install, set up, deploy and host every individual building block. Here we simply connect to a surface and use it as required.”


Imagine that you run a chain of equipment rental stores. You charge customers based on the length of the rental, so your records include the following details that will allow you to properly invoice the customer:



		
	Where the item was rented

	

		
	When it was rented

	

		
	Where the item was returned

	

		
	When it was returned

	




Perhaps you record the transaction in a database every time a customer returns an item.1


From this dataset, you would like to find out how many “one-way” rentals occurred every month in the past 10 years. Perhaps you are thinking of imposing a surcharge for returning the item at a different store and you would like to find out what fraction of rentals would be affected. Let’s posit that wanting to know the answer to such questions is a frequent occurrence—it is important for you to be able to answer such ad hoc questions because you tend to make data-driven decisions.


What kind of system architecture could you use? Let’s run through some of the options.



Relational Database Management System


When recording the transactions, you are probably recording them in a relational, online transaction processing (OLTP) database such as MySQL or PostgreSQL. One of the key benefits of such databases is that they support querying using Structured Query Language (SQL)—your staff doesn’t need to use high-level languages like Java or Python to answer questions that arise. Instead, it is possible to write a query, such as the following, that can be submitted to the database server:



SELECT 
  EXTRACT(YEAR FROM starttime) AS year,
  EXTRACT(MONTH FROM starttime) AS month,
  COUNT(starttime) AS number_one_way
FROM
  mydb.return_transactions
WHERE
  start_station_name != end_station_name
GROUP BY year, month
ORDER BY year ASC, month ASC


Ignore the details of the syntax for now; we cover SQL queries later in this book. Instead, let’s focus on what this tells us about the benefits and drawbacks of an OLTP database.


First, notice that SQL goes beyond just being able to get the raw data in database columns—the preceding query parses the timestamp and extracts the year and month from it. It also does aggregation (counting the number of rows), some filtering (finding rentals where the starting and ending locations are different), grouping (by year and month), and sorting. An important benefit of SQL is the ability to specify what we want and let the database software figure out an optimal way to execute the query.


Unfortunately, queries like this one are quite inefficient for an OLTP database to carry out. OLTP databases are tuned toward data consistency; the point is that you can read from the database even while data is simultaneously being written to it. This is achieved through careful locking to maintain data integrity. For the filtering on station_name to be efficient, you would need to create an index on the station name column. If the station name is indexed, then and only then does the database do special things to the storage to optimize searchability—this is a tradeoff, slowing writing down a bit to improve the speed of reading. If the station name is not indexed, filtering on it will be quite slow. Even if the station name is an index, this particular query will be quite slow because of all the aggregating, grouping, and ordering. OLTP databases are not built for this sort of ad hoc2 query that requires traversal through the entire dataset.





MapReduce Framework


Because OLTP databases are a poor fit for ad hoc queries and queries that require traversal of the entire dataset, special-purpose analyses that require such traversal might be coded in high-level languages like Java or Python. In 2003, Jeff Dean and Sanjay Ghemawat observed that they and their colleagues at Google were implementing hundreds of these special-purpose computations to process large amounts of raw data. Reacting to this complexity, they designed an abstraction that allowed these computations to be expressed in terms of two steps: a map function that processed a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merged all intermediate values associated with the same intermediate key.3 This paradigm, known as MapReduce, became hugely influential and led to the development of Apache Hadoop.


Although the Hadoop ecosystem began with a library that was primarily built in Java, custom analysis on Hadoop clusters is now typically carried out using Apache Spark. Spark programs can be written in Python or Scala, but among the capabilities of Spark is the ability to execute ad hoc SQL queries on distributed datasets.


So, to find out the number of one-way rentals, you could set up the following data pipeline:



		
	Periodically export transactions to comma-separated values (CSV) text files in the Hadoop Distributed File System (HDFS).

	

		
	For ad hoc analysis, write a Spark program that does the following:


	
			
		Loads up the data from the text files into a “DataFrame”

		

			
		Executes an SQL query, similar to the query in the previous section, except that the table name is replaced by the name of the DataFrame

		

			
		Exports the result set back to a text file

		

	

	

		
	Run the Spark program on a Hadoop cluster.

	




Although seemingly straightforward, this architecture imposes a couple of hidden costs. Saving the data in HDFS requires that the cluster be large enough. One underappreciated fact about the MapReduce architecture is that it usually requires that the compute nodes access data that is local to them. The HDFS must, therefore, be sharded across the compute nodes of the cluster. With both data sizes and analysis needs increasing dramatically but independently, it is often the case that clusters are underprovisioned or overprovisioned.4 Thus, the need to execute Spark programs on a Hadoop cluster means that your organization will need to become expert in managing, monitoring, and provisioning Hadoop clusters. This might not be your core business.





BigQuery: A Serverless, Distributed SQL Engine


What if you could run SQL queries as in a Relational Database Management System (RDBMS) system, obtain efficient and distributed traversal through the entire dataset as in MapReduce, and not need to manage infrastructure? That’s the third option, and it is what makes BigQuery so magical. BigQuery is serverless, and you can run queries without the need to manage infrastructure. It enables you to carry out analyses that process aggregations over the entire dataset in seconds to minutes.


Don’t take our word for it, though. Try it out now. Navigate to https://console.cloud.google.com/bigquery (logging into Google Cloud Platform and selecting your project if necessary), copy and paste the following query in the window,5 and then click the “Run query” button:



SELECT 
  EXTRACT(YEAR FROM starttime) AS year,
  EXTRACT(MONTH FROM starttime) AS month,
  COUNT(starttime) AS number_one_way
FROM
  `bigquery-public-data.new_york_citibike.citibike_trips`
WHERE
  start_station_name != end_station_name
GROUP BY year, month
ORDER BY year ASC, month ASC


When we ran it, the BigQuery user interface (UI) reported that the query involved processing 2.51 GB and gave us the result in about 2.7 seconds, as illustrated in Figure 1-1.


[image: Running a query to compute the number of one-way rentals in the BigQuery web UI.]
Figure 1-1. Running a query to compute the number of one-way rentals in the BigQuery web UI




The equipment being rented out is bicycles, and so the preceding query totals up one-way bicycle rentals in New York month by month over the extent of the dataset. The dataset itself is a public dataset (meaning that anyone can query the data held in it) released by New York City as part of its Open City initiative. From this query, we learn that in July 2013, there were 815,324 one-way Citibike rentals in New York City.


Note a few things about this. One is that you were able to run a query against a dataset that was already present in BigQuery. All that the owner of the project hosting the data had to do was to give you6 “view” access to this dataset. You didn’t need to start up a cluster or log in to one. Instead, you just submitted a query to the service and received your results. The query itself was written in SQL:2011, making the syntax familiar to data analysts everywhere. Although we demonstrated on gigabytes of data, the service scales well even when it does aggregations on terabytes to petabytes of data. This scalability is possible because the service distributes the query processing among thousands of workers almost instantaneously.







Working with BigQuery


BigQuery is a data warehouse, implying a degree of centralization and ubiquity. The query we demonstrated in the previous section was applied to a single dataset. However, the benefits of BigQuery become even more apparent when we do joins of datasets from completely different sources or when we query against data that is stored outside BigQuery.



Deriving Insights Across Datasets


The bicycle rental data comes from New York City. How about joining it against weather data from the US National Oceanic and Atmospheric Administration (NOAA) to learn whether there are fewer bicycle rentals on rainy days?7



-- Are there fewer bicycle rentals on rainy days?
WITH bicycle_rentals AS (
  SELECT
    COUNT(starttime) as num_trips,
    EXTRACT(DATE from starttime) as trip_date
 FROM `bigquery-public-data.new_york_citibike.citibike_trips`
 GROUP BY trip_date
),

rainy_days AS
(
SELECT
  date,
  (MAX(prcp) > 5) AS rainy
FROM (
  SELECT
    wx.date AS date,
    IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp
  FROM
    `bigquery-public-data.ghcn_d.ghcnd_2016` AS wx
  WHERE
    wx.id = 'USW00094728'
)
GROUP BY
 date
)

SELECT
  ROUND(AVG(bk.num_trips)) AS num_trips,
  wx.rainy
FROM bicycle_rentals AS bk
JOIN rainy_days AS wx
ON wx.date = bk.trip_date
GROUP BY wx.rainy


Ignore the specific syntax of the query. Just notice that, in the bolded lines, we are joining the bicycle rental dataset with a weather dataset that comes from a completely different source. Running the query satisfyingly yields that, yes, New Yorkers are wimps—they ride the bicycle nearly 20% fewer times when it rains:8



Row num_trips  rainy  
 1  39107.0    false  
 2  32052.0    true


What does being able to share and query across datasets mean in an enterprise context? Different parts of your company can store their datasets in BigQuery and quite easily share the data with other parts of the company and even with partner organizations. The serverless nature of BigQuery provides the technological means to break down departmental silos and streamline collaboration.





ETL, EL, and ELT


The traditional way to work with data warehouses is to start with an Extract, Transform, and Load (ETL) process, wherein raw data is extracted from its source location, transformed, and then loaded into the data warehouse. Indeed, BigQuery has a native, highly efficient columnar storage format9 that makes ETL an attractive methodology. The data pipeline, typically written in either Apache Beam or Apache Spark, extracts the necessary bits from the raw data (either streaming data or batch files), transforms what it has extracted to do any necessary cleanup or aggregation, and then loads it into BigQuery, as demonstrated in Figure 1-2.


[image: The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed on Cloud Dataflow and can handle both streaming and batch data using the same code.]
Figure 1-2. The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed on Cloud Dataflow and can handle both streaming and batch data using the same code




Even though building an ETL pipeline in Apache Beam or Apache Spark tends to be quite common, it is possible to implement an ETL pipeline purely within BigQuery. Because BigQuery separates compute and storage, it is possible to run BigQuery SQL queries against CSV (or JSON or Avro) files that are stored as-is on Google Cloud Storage; this capability is called federated querying. You can take advantage of federated queries to extract the data using SQL queries against data stored in Google Cloud Storage, transform the data within those SQL queries, and then materialize the results into a BigQuery native table.


If transformation is not necessary, BigQuery can directly ingest standard formats like CSV, JSON, or Avro into its native storage—an EL (Extract and Load) workflow, if you will. The reason to end up with the data loaded into the data warehouse is that having the data in native storage provides the most efficient querying performance.


We strongly recommend that you design for an EL workflow if possible, and drop to an ETL workflow only if transformations are needed. If possible, do those transformations in SQL, and keep the entire ETL pipeline within BigQuery. If the transforms will be difficult to implement purely in SQL, or if the pipeline needs to stream data into BigQuery as it arrives, build an Apache Beam pipeline and have it executed in a serverless fashion using Cloud Dataflow. Another advantage of implementing ETL pipelines in Beam/Dataflow is that, because this is programmatic code, such pipelines integrate better with Continuous Integration (CI) and unit testing systems.


Besides the ETL and EL workflows, BigQuery makes it possible to do an Extract, Load, and Transform (ELT) workflow. The idea is to extract and load the raw data as-is and rely on BigQuery views to transform the data on the fly. An ELT workflow is particularly useful if the schema of the raw data is in flux. For example, you might still be carrying out exploratory work to determine whether a particular timestamp needs to be corrected for the local time zone. The ELT workflow is useful in prototyping and allows an organization to start deriving insights from the data without having to make potentially irreversible decisions too early.


The alphabet soup can be confusing, so we’ve prepared a quick summary in Table 1-1.



	Table 1-1. Summary of workflows, sample architectures, and the scenarios in which they would be used
	
		
				Workflow
				Architecture
				When you’d use it
		

	
	
		
				EL
				Extract data from files on Google Cloud Storage.

			Load it into BigQuery’s native storage.

			You can trigger this from Cloud Composer, Cloud Functions, or scheduled queries.
				Batch load of historical data.

			Scheduled periodic loads of log files (e.g., once a day).
		

		
				ETL
				Extract data from Pub/Sub, Google Cloud Storage, Cloud Spanner, Cloud SQL, etc.

			Transform the data using Cloud Dataflow.

			Have Dataflow pipeline write to BigQuery
				When the raw data needs to be quality controlled, transformed, or enriched before being loaded into BigQuery.

			When the data loading needs to happen continuously, i.e., if the use case requires streaming.

			When you want to integrate with continuous integration/continuous delivery (CI/CD) systems and perform unit testing on all components.
		

		
				ELT
				Extract data from files in Google Cloud Storage.

			Store data in close-to-raw format in BigQuery.

			Transform the data on the fly using BigQuery views.
				Experimental datasets where you are not yet sure what kinds of transformations are needed to make the data usable.

			Any production dataset where the transformation can be expressed in SQL.
		

	



The workflows in Table 1-1 are in the order that we usually recommend.





Powerful Analytics


The benefits of a warehouse derive from the kinds of analyses that you can do with the data held within it. The primary way you interact with BigQuery is via SQL, and because BigQuery is an SQL engine, you can use a wide variety of Business Intelligence (BI) tools such as Tableau, Looker, and Google Data Studio to create impactful analyses, visualizations, and reports on data held in BigQuery. By clicking the “Explore in Data Studio” button in the BigQuery web UI, for example, we can quickly create a visualization of how our one-way bike rentals vary by month, as depicted in Figure 1-3.


BigQuery provides full-featured support for SQL:2011, including support for arrays and complex joins. The support for arrays in particular makes it possible to store hierarchical data (such as JSON records) in BigQuery without the need to flatten the nested and repeated fields. Besides the support for SQL:2011, BigQuery has a few extensions that make it useful beyond the core set of data warehouse use cases. One of these extensions is support for a wide range of spatial functions that enable location-aware queries, including the ability to join two tables based on distance or overlap criteria.10 BigQuery is, therefore, a powerful engine to carry out descriptive analytics. 


[image: Visualization in Data Studio of how one-way rentals vary by month. Nearly 15% of all one-way bicycle rentals in New York happen in September.]
Figure 1-3. Visualization in Data Studio of how one-way rentals vary by month; nearly 15% of all one-way bicycle rentals in New York happen in September




Another BigQuery extension to standard SQL supports creating machine learning models and carrying out batch predictions. We cover the machine learning capability of BigQuery in detail in Chapter 9, but the gist is that you can train a BigQuery model and make predictions without ever having to export data out of BigQuery. The security and data locality advantages of being able to do this are enormous. BigQuery is, therefore, a data warehouse that supports not just descriptive analytics but also predictive analytics.


A warehouse also implies being able to store different types of data. Indeed, BigQuery can store data of many types: numeric and textual columns, for sure, but also geospatial data and hierarchical data. Even though you can store flattened data in BigQuery, you don’t need to—schemas can be rich and quite sophisticated. The combination of location-aware queries, hierarchical data, and machine learning make BigQuery a powerful solution that goes beyond conventional data warehousing and business intelligence.


BigQuery supports the ingest both of batch data and of streaming data. You can stream data directly into BigQuery via a REST API. Often, users who want to transform the data—for example, by adding time-windowed computations—use Apache Beam pipelines executed by the Cloud Dataflow service. Even as the data is streaming into BigQuery, you can query it. Having common querying infrastructure for both historical (batch) data and current (streaming) data is extremely powerful and simplifies many workflows.





Simplicity of Management


Part of the design consideration behind BigQuery is to encourage users to focus on insights rather than on infrastructure. When you ingest data into BigQuery, there is no need to think about different types of storage, or their relative speed and cost tradeoffs; the storage is fully managed. As of this writing, the cost of storage automatically drops to lower levels if a table is not updated for 90 days.11


We have already talked about how indexing is not necessary; your SQL queries can filter on any column in the dataset, and BigQuery will take care of the necessary query planning and optimization. For the most part, we recommend that you write queries to be clear and readable and rely on BigQuery to choose a good optimization strategy. In this book, we talk about performance tuning, but performance tuning in BigQuery consists mainly of clear thinking and the appropriate choice of SQL functions. You will not need to do database administration tasks like replication, defragmentation, or disaster recovery; the BigQuery service takes care of all that for you.


Queries are automatically scaled to thousands of machines and executed in parallel. You don’t need to do anything special to enable this massive parallelization. The machines themselves are transparently provisioned to handle the different stages of your job; you don’t need to set up those machines in any way.


Not having to set up infrastructure leads to less hassle in terms of security. Data in BigQuery is automatically encrypted, both at rest and in transit. BigQuery takes care of the security considerations behind supporting multitenant queries and providing isolation between jobs. Your datasets can be shared using Google Cloud Identity and Access Management (IAM), and it is possible to organize the datasets (and the tables and views within them) to meet different security needs, whether you need openness or auditability or confidentiality. 


In other systems, provisioning infrastructure for reliability, elasticity, security, and performance often takes a lot of time to get right. Given that these database administration tasks are minimized with BigQuery, organizations using BigQuery find that it frees their analysts’ time to focus on deriving insights from their data.







How BigQuery Came About


In late 2010, the site director of the Google Seattle office pulled several engineers (one of whom is an author of this book) off their projects and gave them a mission: to build a data marketplace. We tried to craft the best way to come up with a viable marketplace. The chief issue was data sizes, because we didn’t want to provide just a download link. A data marketplace is infeasible if people need to download terabytes of data in order to work with it. How would you build a data marketplace that didn’t require users to start by downloading the datasets to their own machines?


Enter a principle popularized by Jim Gray, the database pioneer. When you have “big data,” Gray said, “you want to move the computation to the data, rather than move the data to the computation.” Gray elaborates:



The other key issue is that as the datasets get larger, it is no longer possible to just FTP or grep them. A petabyte of data is very hard to FTP! So at some point, you need indices and you need parallel data access, and this is where databases can help you. For data analysis, one possibility is to move the data to you, but the other possibility is to move your query to the data. You can either move your questions or the data. Often it turns out to be more efficient to move the questions than to move the data.12




In the case of the data marketplace that we were building, users would not need to download the datasets to their own machines if we made it possible for them to bring their computations to the data. We would not need to provide a download link, because users could work on their data without the need to move it around.13


We, the Googlers who were tasked with building a data marketplace, made the decision to defer that project and focus on building a compute engine and storage system in the cloud. After ensuring that users could do something with the data, we would go back and add data marketplace features.


In what language should users write their computation when bringing computation to the data on the cloud? We chose SQL because of three key characteristics. First, SQL is a versatile language that allows a large range of people, not just developers, to ask questions and solve problems with their data. This ease of use was extremely important to us. Second, SQL is “relationally complete,” meaning that any computation over the data can be done using SQL. SQL is not just easy and approachable. It is also very powerful. Finally, and quite important for a choice of a cloud computation language, SQL is not “Turing complete” in a key way: it always terminates.14 Because it always terminates, it is ok to host SQL computation without worrying that someone will write an infinite loop and monopolize all the compute power in a datacenter.


Next, we had to choose an SQL engine. Google had a number of internal SQL engines that could operate over data, including some that were very popular. The most advanced engine was called Dremel; it was used heavily at Google and could process terabytes’ worth of logs in seconds. Dremel was quickly winning people over from building custom MapReduce pipelines to ask questions of their data.


Dremel had been created in 2006 by engineer Andrey Gubarev, who was tired of waiting for MapReduces to finish. Column stores were becoming popular in the academic literature, and he quickly came up with a column storage format (Figure 1-4) that could handle the Protocol Buffers (Protobufs) that are ubiquitous throughout Google.


[image: Column stores can reduce the amount of data being read by queries that process all rows, but not all columns.]
Figure 1-4. Column stores can reduce the amount of data being read by queries that process all rows but not all columns




Although column stores are great in general for analytics, they are particularly useful for logs analysis at Google because many teams operate over a type of Protobuf that has hundreds of thousands of columns. If Andrey had used a typical record-oriented store, users would have needed to read the files row by row, thus reading in a huge amount of data in the form of fields that they were going to discard anyway. By storing the data column by column, Andrey made it so that if a user needed just a few of the thousands of fields in the log Protobufs, they would need to read only a small fraction of the overall data size. This was one of the reasons why Dremel was able to process terabytes’ worth of logs in seconds.


The other reason why Dremel was able to process data so fast was that its query engine used distributed computing. Dremel scaled to thousands of workers by structuring the computation as a tree, with the filters happening at the leaves and aggregation happening toward the root.


By 2010, Google was scanning petabytes of data per day using Dremel, and many people in the company used it in some form or another. It was the perfect tool for our nascent data marketplace team to pick up and use.


As the team productized Dremel, added a storage system, made it self-tuning, and exposed it to external users, the team realized that a cloud version of Dremel was perhaps even more interesting than their original mission. The team renamed itself “BigQuery,” following the naming convention for “Bigtable,” Google’s NoSQL database.


At Google, Dremel is used to query files that sit on Colossus, Google’s file store for storing data. BigQuery added a storage system that provided a table abstraction, not just a file abstraction. This storage system was key in making BigQuery simple to use and always fast, because it allowed key features like ACID (Atomicity, Consistency, Isolation, Durability) transactions and automatic optimization, and it meant that users didn’t need to manage files.


Initially, BigQuery retained its Dremel roots and was focused on scanning logs. However, as more customers wanted to do data warehousing and more complex queries, BigQuery added improved support for joins and advanced SQL features like analytic functions. In 2016, Google launched support for standard SQL in BigQuery, which allowed users to run queries using standards-compliant SQL rather than the awkward initial “DremelSQL” dialect.


BigQuery did not start out as a data warehouse, but it has evolved into one over the years. There are good things and bad things about this evolution. On the positive side, BigQuery was designed to solve problems people have with their data, even if they don’t fit nicely into data warehousing models. In this way, BigQuery is more than just a data warehouse. On the downside, however, a few data warehousing features that people expect, like a Data Definition Language (DDL; e.g., CREATE statements) and a Data Manipulation Language (DML; e.g., INSERT statements), were missing until recently. That said, BigQuery has been focusing on a dual path: first, adding differentiated features that Google is in a unique position to provide; and second, becoming a great data warehouse in the cloud. 





What Makes BigQuery Possible?


From an architectural perspective, BigQuery is fundamentally different from on-premises data warehouses like Teradata or Vertica as well as from cloud data warehouses like Redshift and Microsoft Azure Data Warehouse. BigQuery is the first data warehouse to be a scale-out solution, so the only limit on speed and scale is the amount of hardware in the datacenter.


This section describes some of the components that go into making BigQuery successful and unique.



Separation of Compute and Storage


In many data warehouses, compute and storage reside together on the same physical hardware.  This colocation means that in order to add more storage, you might need to add more compute power as well. Or to add more compute power, you’d also need to get additional storage capacity.


If everyone’s data needs were similar, this wouldn’t be a problem; there would be a consistent golden ratio of compute to storage that everyone would live by. But in practice, one or the other of the factors tends to be a limitation. Some data warehouses are limited by compute capacity, so they slow down at peak times. Other data warehouses are limited by storage capacity, so maintainers need to figure out what data to throw out.


When you separate compute from storage as BigQuery does, it means that you never need to throw out data, unless you no longer want it. This might not sound like a big deal, but having access to full-fidelity data is immensely powerful. You might decide you want to calculate something in a different way, so you can go back to the raw data to requery it. You would not be able to do this if you had discarded the source data due to space constraints. You might decide that you want to dig into why some aggregate value exhibits strange behavior. You couldn’t do this if you had deleted the data that contributed to the aggregation.


Scaling compute is equally powerful. BigQuery resources are denominated in terms of “slots,” which are, roughly speaking, about half of a CPU core (we cover slots in detail in Chapter 6). BigQuery uses slots as an abstraction to indicate how many physical compute resources are available. Queries running too slow? Just add more slots. More people want to create reports? Add more slots. Want to cut back on your expenses? Decrease your slots.


Because BigQuery is a multitenant system that manages large pools of hardware resources, it is able to dole out the slots on a per-query or per-user basis. It is possible to reserve hardware for your project or organization, or you can run your queries in the shared on-demand pool. By sharing resources in this way, BigQuery can devote very large amounts of computing power to your queries. If you need more computing power than is available in the on-demand pool, you can purchase more via the BigQuery Reservation API.


Several BigQuery customers have reservations in the tens of thousands of slots, which means that if they run only one query at a time, those queries can consume tens of thousands of CPU cores at once. With some reasonable assumptions about numbers of CPU cycles per processed row, it is pretty easy to see that these instances can process billions or even trillions of rows per second.


In BigQuery, there are some customers that have petabytes of data but use a relatively small amount of it on a daily basis. Other customers store only a few gigabytes of data but perform complex queries using thousands of CPUs. There isn’t a one-size-fits-all approach that works for all use cases. Fortunately, the separation of compute and storage allows BigQuery to accommodate a wide range of customer needs.





Storage and Networking Infrastructure


BigQuery differs from other cloud data warehouses in that queries are served primarily from spinning disks in a distributed filesystem. Most competitor systems need to cache data within compute nodes to get good performance. BigQuery, on the other hand, relies on two systems unique to Google, the Colossus File System and Jupiter networking, to ensure that data can be queried quickly no matter where it physically resides in the compute cluster.


Google’s Jupiter networking fabric relies on a network configuration where smaller (and hence cheaper) switches are arranged to provide the capability for which a much larger logical switch would otherwise be needed. This topology of switches, along with a centralized software stack and custom hardware and software, allows one petabit of bisection bandwidth within a datacenter. That is equivalent to 100,000 servers communicating at 10 Gb/sec, and it means that BigQuery can work without the need to colocate the compute and storage. If the machines hosting the disks are at the other end of the datacenter from the machines running the computation, it will effectively run just as fast as if the two machines were in the same rack.


The fast networking fabric comes in handy in two ways: to read in data from a disk, and to shuffle between query stages. As discussed earlier, the separation of compute and storage in BigQuery enables any machine within the datacenter to ingest data from any storage disk. This requires, however, that the necessary input data to the queries be read over the network at very high speeds. The details of shuffle are described in Chapter 6, but it suffices for now to understand that running complex distributed queries usually requires moving large amounts of data between machines at intermediate stages. Without a fast network connecting the machines doing the work, shuffle would become a bottleneck that slows down the queries significantly.


The networking infrastructure provides more than just speed: it also allows for dynamic provisioning of bandwidth. Google datacenters are connected through a backbone network called B4 that is software-defined to allocate bandwidth in an elastic manner to different users, and to provide reliable quality of service for high-priority operations. This is crucial for implementing high-performing, concurrent queries.


Fast networking isn’t enough, however, if the disk subsystem is slow or lacks enough scale. To support interactive queries, the data needs to be read from the disks fast enough so that they can saturate the network bandwidth available. Google’s distributed filesystem is called Colossus and can coordinate hundreds of thousands of disks by constantly rebalancing old, cold data and distributing newly written data evenly across disks.15 This means that the effective throughput is tens of terabytes per second. By combining this effective throughput with efficient data formats and storage, BigQuery provides the ability to query petabyte-sized tables in minutes.





Managed Storage


BigQuery’s storage system is built on the idea that when you’re dealing with structured storage, the appropriate abstraction is the table, not the file. Some other cloud-based and open source data processing systems expose the concept of the file to users, which puts users on the hook for managing file sizes and ensuring that the schema remains consistent. Even though creating files of an appropriate size for a static data store is possible, it is notoriously difficult to maintain optimal file sizes for data that is changing over time. Similarly, it is difficult to maintain a consistent schema when you have a large number of files with self-describing schemas (e.g., Avro or Parquet)—typically, every software update to systems producing those files results in changes to the schema. BigQuery ensures that all the data held within a table has a consistent schema and enforces a proper migration path for historical data. By abstracting the underlying data formats and file sizes from the user, BigQuery can provide a seamless experience so that queries are always fast.


There is another advantage to BigQuery managing its own storage: BigQuery can continue to become faster in a way that is transparent to the end user. For example, improvements in storage formats can be applied automatically to user data. Similarly, improvements in storage infrastructure become immediately available. Because BigQuery manages all of the storage, users don’t need to worry about backup or replication. Everything from upgrades and replication to backup and restoration are handled transparently and automatically by the storage management system.


One key advantage of working with structured storage at the abstraction level of a table (rather than of a file) and of providing storage management to these tables transparently to the end user is that tables allow BigQuery to support database-like features, such as DML. You can run a query that updates or deletes rows in a table and leave it to BigQuery to determine the best way to modify the storage to reflect this information. BigQuery operations are ACID; that is, all queries will commit completely or not at all. Rest assured that your queries will never see the intermediate state of another query, and queries started after another query completes will never see old data. You do have the ability to fine-tune the storage by specifying directives that control how the data is stored, but these operate at the abstraction level of tables, not files. For example, it is possible to control how tables are partitioned and clustered (we cover these features in detail in Chapter 7) and thereby improve the performance and/or reduce the cost of queries against those tables.


Managed storage is strongly typed, which means that data is validated at entry to the system. Because BigQuery manages the storage and allows users to interact with this storage only via its APIs, it can count on the underlying data not being modified outside of BigQuery. Thus, BigQuery can guarantee to not throw a validation error at read time about any of the data present in its managed storage. This guarantee also implies an authoritative schema, which is useful when figuring out how to query your tables. Besides improving query performance, the presence of an authoritative schema helps when trying to make sense of what data you have because a BigQuery schema contains not just type information but also annotations and table descriptions about how the fields can be used.


One downside of managed storage is that it is more difficult to directly access and process the data using other frameworks. For example, had the data been available at the abstraction level of files, you might have been able to directly run a Hadoop job over a BigQuery dataset. BigQuery addresses this issue by providing a structured parallel API to read the data. This API lets you read at full speed from Spark or Hadoop jobs, but it also provides extra features, like projection, filtering, and dynamic rebalancing.





Integration with Google Cloud Platform


Google Cloud follows the design principle called “separation of responsibility,” wherein a small number of high-quality, highly focused products integrate tightly with each other. It is, therefore, important to consider the entire Google Cloud Platform (GCP) when comparing BigQuery with other database products.


A number of different GCP products extend the usefulness of BigQuery or make it easier to understand how BigQuery is being used. We talk about many of these related products in detail in this book, but it is worth being aware of the general separation of responsibilities:



		
	StackDriver monitoring and audit logs provide ways to understand BigQuery usage in your organization.

	

		
	Cloud Dataproc provides the ability to read, process, and write to BigQuery tables using Apache Spark programs.

	

		
	Federated queries allow BigQuery to query data held in Google Cloud Storage, Cloud SQL (a relational database), Bigtable (a NoSQL database), Spanner (a distributed database), or Google Drive (which offers spreadsheets).

	

		
	Google Cloud Data Loss Prevention API helps you to manage sensitive data and provides the capability to redact or mask Personally Identifiable Information (PII) from your tables.

	

		
	Other machine learning APIs extend what it is possible on data held in BigQuery; for example, the Cloud Natural Language API can identify people, places, sentiment, and more in free-form text (such as those of customer reviews) held in some table column.

	

		
	AutoML Tables and AutoML Text can create high-performing custom machine learning models from data held in BigQuery tables.

	

		
	Cloud Catalog provides the ability to discover data held across your organization.

	

		
	You can use Cloud Pub/Sub to ingest streaming data and Cloud Dataflow to transform and load it into BigQuery. You can use Cloud Dataflow to carry out streaming queries as well. You can, of course, interactively query the streaming data within BigQuery itself.16

	

		
	Data Studio provides charts and dashboards driven from data in BigQuery. Third-party tools such as Tableau and Looker also support BigQuery as a backend.

	

		
	Cloud AI Platform provides the ability to train sophisticated machine learning programs from data held in BigQuery.  

	

		
	Cloud Scheduler and Cloud Functions allow for scheduling or triggering of BigQuery queries as part of larger workflows.

	

		
	Cloud Composer allows for orchestration of BigQuery jobs along with tasks that need to be performed in Cloud Dataflow or other processing frameworks, whether on Google Cloud or on-premises in a hybrid cloud setup.

	




Taken together, BigQuery and the GCP ecosystem have features that span several other database products from other cloud vendors; you can use them as an analytics warehouse but also as an ELT system, a data lake (queries over files), or a source of BI. The rest of this book paints a broad picture of how you can use BigQuery in all of its aspects.





Security and Compliance


The integration with GCP goes beyond just interoperability with other products. Cross-cutting features provided by the platform provide consistent security and compliance. 


The fastest hardware and most advanced software are of little use if you can’t trust them with your data. BigQuery’s security model is tightly integrated with the rest of GCP, so it is possible to take a holistic view of your data security. BigQuery uses Google’s IAM access-control system to assign specific permissions to individual users or groups of users. BigQuery also ties in tightly with Google’s Virtual Private Cloud (VPC) policy controls, which can protect against users who try to access data from outside your organization, or who try to export it to third parties. Both IAM and VPC controls are designed to work across Google Cloud products, so you don’t need to worry that certain products create a security hole.


BigQuery is available in every region where Google Cloud has a presence, enabling you to process the data in the location of your choosing. As of this writing, Google Cloud has more than two dozen datacenters around the world, and new ones are being opened at a fast rate. If you have business reasons for keeping data in Australia or Germany, it is possible to do so. Just create your dataset with the Australian or German region code, and all of your queries against the data will be done within that region.


Some organizations have even stronger data location requirements that go beyond where data is stored and processed. Specifically, they want to ensure that their data cannot be copied or otherwise leave their physical region. GCP has physical region controls that apply across products; you can create a “VPC service controls” policy that disallows data movement outside of a selected region. If you have these controls enabled, users will not be able to copy data across regions or export to Google Cloud Storage buckets in another region.







Summary


BigQuery is a highly scalable data warehouse that provides fast SQL analytics over large datasets in a serverless way. Although users appreciate the scale and speed of BigQuery, company executives often appreciate the transformational benefits that come from being able to do ad hoc querying in a serverless way, opening up data-driven decision making to all parts of the company.


To ingest data into BigQuery, you can use an EL pipeline (commonly used for periodic loads of log files), an ETL pipeline (commonly used when data needs to be enriched or quality controlled), or an ELT pipeline (commonly used for exploratory work).


BigQuery is designed for data analytics (OLAP) workloads and provides full-featured support for SQL:2011. BigQuery can achieve its scale and speed because it is built on innovative engineering ideas such as the use of columnar storage, support for nested and repeated fields, and separation of compute and storage, about which Google went on to publish papers. BigQuery is part of the GCP ecosystem of big data analytics tools and integrates tightly with both the infrastructure pieces (such as security, monitoring, and logging) and the data processing and machine learning pieces (such as streaming, Cloud DLP, and AutoML) of the platform.



1 In reality, you’ll need to start the record keeping at the time customers borrow the equipment, so that you will know whether customers have absconded with the equipment. However, it’s rather early in this book to worry about that!
2 In this book, we use “ad hoc” query to refer to a query that is written without any attempt to prepare the database ahead of time by using features such as indexes.
3 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” OSDI ’04: Sixth Symposium on Operating Systems Design and Implementation, San Francisco, CA (2004), pp. 137–150. Available at https://research.google.com/archive/mapreduce-osdi04.pdf.
4 On Google Cloud Platform, Cloud Dataproc (the managed Hadoop offering) addresses this conundrum in a different way. Because of the high bisectional bandwidth available within Google datacenters, Cloud Dataproc clusters are able to be job specific—the data is stored on Google Cloud Storage and read over the wire on demand. This is possible only if bandwidths are high enough to approximate disk speeds. Don’t try this at home.
5 For your copy and pasting convenience, you can find all of the code and query snippets in this book (including the query in the example) in the GitHub repository for this book.
6 Not you specifically. This is a public dataset, and the owner of the dataset gave this permission to all authenticated users. You can be less permissive with your data, sharing the dataset only with those within your domain or within your team.
7 This code can be downloaded from the book’s GitHub repository.
8 Keep in mind that both authors live in Seattle, where it rains 150 days each year.
9 You can find more details on the columnar storage format in “How BigQuery Came About”.
10 For example, to compute conversion metrics based on the distance that a customer would need to travel to purchase a product.
11 We believe all mentions of price to be correct as of the writing of this book, but please do refer to the relevant policy and pricing sheets, as these are subject to change.
12 Jim Gray on eScience: A Transformed Scientific Method”, from The Fourth Paradigm: Data-Intensive Scientific Discovery, ed. Tony Hey, Stewart Tansley, and Kristin Tolle (Microsoft, 2009), xiv. Available at https://oreil.ly/M6zMN.
13 Today, BigQuery does provide the ability to export tables and results to Google Cloud Storage, so we did end up building the download link after all! But BigQuery is not just a download link—most uses of BigQuery involve operating on the data in place.
14 SQL does have a RECURSIVE keyword, but like many SQL engines, BigQuery does not support this. Instead, BigQuery offers better ways to deal with hierarchical data by supporting arrays and nesting.
15 To read more about Colossus, see http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf and https://www.wired.com/2012/07/google-colossus/.
16 The separation of responsibility here is that Cloud Dataflow is better for ongoing, routine processing while BigQuery is better for interactive, ad hoc processing. Both Cloud Dataflow and BigQuery handle batch data as well as streaming data, and it is possible to run SQL queries within Cloud Dataflow.
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Preface

Enterprises are becoming increasingly data driven, and a key component of any enterprise’s data strategy is a data warehouse—a central repository of integrated data from all across the company. Traditionally, the data warehouse was used by data analysts to create analytical reports. But now it is also increasingly used to populate real-time dashboards, to make ad hoc queries, and to provide decision-making guidance through predictive analytics. Because of these business requirements for advanced analytics and a trend toward cost control, agility, and self-service data access, many organizations are moving to cloud-based data warehouses such as Google BigQuery.

In this book, we provide a thorough tour of BigQuery, a serverless, highly scalable, low-cost enterprise data warehouse that is available on Google Cloud. Because there is no infrastructure to manage, enterprises can focus on analyzing data to find meaningful insights using familiar SQL.

Our goal with BigQuery has been to build a data platform that provides leading-edge capabilities, takes advantage of the many great technologies that are now available in cloud environments, and supports tried-and-true data technologies that are still relevant today. For example, on the leading edge, Google’s BigQuery is a serverless compute architecture that decouples compute and storage. This enables diverse layers of the architecture to perform and scale independently, and it gives data developers flexibility in design and deployment. Somewhat uniquely, BigQuery supports native machine learning and geospatial analysis. With Cloud Pub/Sub, Cloud Dataflow, Cloud Bigtable, Cloud AI Platform, and many third-party integrations, BigQuery interoperates with both traditional and modern systems, at a wide range of desired throughput and latency. And on the tried-and-true front, BigQuery supports ANSI-standard SQL, columnar optimization, and federated queries, which are key to the self-service ad hoc data exploration that many users demand.


Who Is This Book For?

This book is for data analysts, data engineers, and data scientists who want to use BigQuery to derive insights from large datasets. Data analysts can interact with BigQuery through SQL and via dashboarding tools like Looker, Data Studio, and Tableau. Data engineers can integrate BigQuery with data pipelines written in Python or Java and using frameworks such as Apache Spark and Apache Beam. Data scientists can build machine learning models in BigQuery, run TensorFlow models on data in BigQuery, and delegate distributed, large-scale operations to BigQuery from within a Jupyter notebook.





Conventions Used in This Book


The following typographical conventions are used in this book:



		Italic

		
	Indicates new terms, URLs, email addresses, filenames, and file extensions.

	

		Constant width

		
	Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	

		Constant width bold

		
	Shows commands or other text that should be typed literally by the user.

	

		Constant width italic

		
	Shows text that should be replaced with user-supplied values or values determined by context.

	




Tip

This element signifies a tip or suggestion.




Note

This element signifies a general note.




Warning

This element indicates a warning or caution.







Using Code Examples



Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/GoogleCloudPlatform/bigquery-oreilly-book.


If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.


We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Google BigQuery: The Definitive Guide by Valliappa Lakshmanan and Jordan Tigani (O’Reilly). Copyright 2020 Valliappa Lakshmanan and Jordan Tigani, 978-1-492-04446-8.”


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.





O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.



Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, please visit http://oreilly.com.





How to Contact Us


Please address comments and questions concerning this book to the publisher:



		O’Reilly Media, Inc.

		1005 Gravenstein Highway North

		Sebastopol, CA 95472

		800-998-9938 (in the United States or Canada)

		707-829-0515 (international or local)

		707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/google_bigquery_tdg.



To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Follow the authors on Twitter: https://twitter.com/lak_gcp and https://twitter.com/jrdntgn


Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 9. Machine Learning in BigQuery


Artificial intelligence (AI) is the domain of computer science focused on building computational systems that are capable of acting autonomously. Over the years, many different subfields have arisen in AI, but an approach that has proven successful in recent years has been the idea of using large datasets to train general-purpose models (such as decision trees and neural networks) that can solve complex problems with great accuracy.


Teaching a computer based on examples is called supervised machine learning, and it can be carried out in BigQuery with the data remaining in place. In this chapter, we look at how to solve a wide variety of machine learning problems using BigQuery ML. Even though machine learning can be carried out in BigQuery, being able to use powerful, industry-standard machine learning frameworks such as TensorFlow on the data in BigQuery can give us access to a much wider variety of machine learning models and components. Hence, in this chapter we also look at the connections that exist between BigQuery and full-fledged machine learning frameworks.



What Is Machine Learning?


If we have collected historical data (and what is a data warehouse for, if not precisely this?), and the historical data contains the correct answers (called the “label”), we can train machine learning models on this data to predict the outcome for cases where the label is not yet known. For example, if we have a historical dataset of actual sales figures, we can train machine learning models to predict sales in the future. As with data analytics, machine learning in BigQuery is also carried out in SQL.



Formulating a Machine Learning Problem


For example, suppose that your business operates several hundred movie theaters all over the country, and you want to predict how many movie tickets will sell for a particular showtime at a particular theater—this sort of prediction is useful if you are trying to determine how to schedule movies. If you have data about the movies that have been run in the past, our machine learning problem might be formulated as follows: use data about the movies in our historical dataset to learn the number of tickets sold for each showtime in each theater. Then apply that machine learning model to a candidate movie to determine how much demand there will be for this movie at a specific showtime.


The attributes of the movie that you will use as inputs to the machine learning model are called the features of the model. The label is what you want to learn how to predict, and in this case, the label is the number of tickets sold. Following are some examples of features that you might want to include in your model:



		
	Motion picture content rating1 (for example, PG-13 means that parental guidance is recommended for children younger than 13)

	

		
	Is the showtime on a workday or on a weekend/holiday?

	

		
	At what time of day is the show (afternoon, evening, or night)?

	

		
	Movie genre (comedy, thriller, etc.)

	

		
	How long ago was the movie released (in days)?

	

		
	Average critics’ rating of the movie (scale of 1 to 10)

	

		
	Total box office receipts for the previous movie by this director, if applicable

	

		
	Total box office receipts for the previous movie by the lead actor, if applicable

	

		
	Theater location

	

		
	Theater type (e.g., multiplex, drive-in, mall, etc.)

	




Note that the title of the movie, as is, is not a good input to the machine learning model.2 Though Tinker Tailor Soldier Spy, a 2011 movie, might be part of our training dataset, we will typically not be interested in predicting the performance of that exact movie (for one, it has already run in our theater). Instead, our interest will be in predicting the performance of, say, Deep Water Horizon, another thriller with similar critical reviews that was released in 2016.


Hence, the machine learning model needs to be based on features of the movie (things that describe the movie), not things that uniquely identify it. This way, our model might guess that Deep Water Horizon, if run at similar timings to Tinker Tailor Soldier Spy, will perform similarly because the movies are in the same genre, and because the critics’ rating of the movies are similar.


The first four features (rating, type of showtime, showtime, genre) are categorical features, by which we mean that they take one of a finite number of possible values. In BigQuery, any feature that is a string is considered a categorical feature. If the database representation of categorical features happens to be some other type (for example, the showtime might be a number such as 1430 or a timestamp), you should cast it as a string in your query. The next four features (time since release, critics’ ratings, box office receipts for director and lead actor) are numeric features, by which we mean that they are numbers with meaningful magnitudes. The last two features (theater type and location) will need to be represented in special ways; we discuss choices later in this chapter.


The label, or the correct answer for the prediction problem, is given by the number of tickets sold historically. During the training of the machine learning model, BigQuery is shown the input features and corresponding labels and creates the model that captures this information (see Figure 9-1). Then, during prediction, the trained machine learning model can be applied on a new set of input features to gain an estimate of how many tickets we can expect to sell if we schedule the movie at a specific time and location.


[image: During training, the model is shown features and their corresponding labels. Then the trained model can be used for prediction. Given a set of features, the model predicts a value for the label.]
Figure 9-1. During training, the model is shown features and their corresponding labels. Then the trained model can be used for prediction. Given a set of features, the model predicts a value for the label.







Types of Machine Learning Problems


We tend to use different machine learning models and techniques depending on the nature of the input features and the labels. In this subsection, we’ll provide brief definitions of the types of problems. We cover the solutions to these problems in greater detail in the rest of this chapter.



Regression


In the example in the previous section, we wanted to predict the number of tickets that would be sold for a particular showing of a movie. In that case, the label is a number, and so the type of machine learning problem it represents is called regression.





Classification


If the label is a categorical variable, the type of machine learning problem is called classification. The output of a classification model is the probability that a row belongs to a label value. For example, if you were to train a machine learning model to predict whether a show will sell out, you would be using a classification model, and the output of the model would be the probability that a show sells out.


Many classification problems have two classes: the show sells out or it doesn’t, a customer buys the item or they don’t, the flight is late or it isn’t. These are called binary classification problems. In such cases, the label column should be True or False, or it should be 1 or 0. The prediction from the model will be the probability that the label is True. We typically threshold the probability at 0.5 to determine the most likely class.


A classification problem can have multiple classes. For example, revisiting our bike rental scenario, you might want to predict the station at which a bicycle will be returned, and because there are hundreds of possible values for this categorical label, this is a multiclass classification problem. The output of such a machine learning model will be a set of probabilities, one for each station in the network, and the sum of these probabilities will be 1.0. In a multiclass problem, we typically care about the top three or top five predictions, not about the actual value of the probability.





Recommender


The special case of multiclass classification for which the task is to recommend the “next” product based on ratings or past purchases is called a recommender system. Although a recommendation problem could be solved in the standard way that all multiclass classification problems are, special machine learning model types have been built for these problems, and it is preferable to use these more specific model types. Recommender systems are also the preferable way to address customer targeting problems—to find customers who will like a product or promotional offer.





Clustering


If we don’t have a label at all, we cannot do supervised learning. We could find natural groupings within the data; this type of ML problem is called clustering.  We might employ clustering of customer features to perform customer segmentation, for example. Otherwise, we can use the Cloud Data Labeling Service to annotate our training dataset with human labelers as a precursor to carrying out supervised learning.





Unstructured data


In the discussion so far, we have assumed that our data consists of structured or semi-structured data. If some of the input features are unstructured (e.g., images or natural language text), consider using a preexisting model such as Cloud Vision API or Cloud Natural Language to process the unstructured data in question, and use the output of these APIs as numeric or categorical inputs to the machine learning model. For example, you could use the Natural Language API to identify key entities in customer emails or the sentiment of customer reviews, and use the entities as categorical variables and the sentiment as a numeric feature.


You also might be able to turn unstructured data into structured data through string functions or machine learning APIs. Splitting a text field into individual words and treating the presence/absence of individual words as features is a common technique, often called bag of words. In the movie title example, if you had a movie called The Spy Who Loved Me, you might have two features, has_spy and has_love, as True, and all other features would be false (you’d probably drop “the,” “Who,” and “Me” as being too common to be helpful in prediction). Or you might use the number of words in the title (maybe wordy titles are more likely to be indie films and more likely to appeal to different audiences).


If the label itself is unstructured (e.g., you want the model to craft the ideal response to customer questions based on a dataset of historical responses), this is a natural language generation problem—it’s outside the scope of what BigQuery can handle.





Summary of model types


Table 9-1 summarizes the machine learning problem types. We discuss the BigQuery model types in the following sections.



	Table 9-1. Machine learning model types and how to implement them in BigQuery
	
		
				Problem characteristic
				Machine learning problem type
				BigQuery model_type
		

	
	
		
				Labels unavailable and data cannot be labeled 
				Clustering
				kmeans
		

		
				Label is a number
				Regression
				linear_reg

			dnn_regressor

			boosted_tree_regressor
		

		
				Recommend products to users
				Recommender
				matrix_factorization
		

		
				Recommend users for product
				Customer targeting
				matrix_factorization
		

		
				Label is 1/0, True/False (or two categories)
				Binary classification
				logistic_reg

			dnn_classifier

			boosted_tree_classifier
		

		
				Label is in a fixed set of strings
				Multiclass classification
				logistic_reg

			dnn_classifier

			boosted_tree_classifier
		

		
				Input feature is unstructured
				Image classification

			Text classification

			Sentiment analysis

			Entity extraction
				Use output of Cloud Vision API or Cloud Natural Language API as input to any of the standard BigQuery models above
		

		
				Label is unstructured
				Question answering

			Text summarization

			Image captioning
				Use Cloud AutoML products
		

	










Building a Regression Model


As an example of building a regression model, let’s use the london_bicycles dataset. Let’s assume that we have two types of bicycles: hardy commuter bikes, and fast but fragile road bikes. If a bicycle rental is likely to be for a long duration, we need to have road bikes in stock, but if the rental is likely to be for a short duration, we need to have commuter bikes in stock. Therefore, to build a system to properly stock bicycles, we need to predict the duration of bicycle rentals.



Choose the Label


The first step of solving a machine learning problem is to formulate it—to identify features of our model and the label. Because the goal of our first model is to predict the duration of a rental based on our historical dataset of cycle rentals, the label is the duration of the rental.


However, is this the correct objective for the problem? Should we be predicting the duration of each rental, or should we be predicting the total duration of all rentals at a station over, for instance, an hour? If the latter is the better formulation, the label should be the sum of all the rentals in a specific hour. Talking to our business, though, we learn that a station with 1,000 rentals of 20 minutes each should get commuter bikes, whereas a station that has 100 rentals of 200 minutes each should get road bikes. So predicting the total duration will not help the business make the right decision; predicting the duration of each rental will help them.


Another option is to predict the likelihood of rentals that last less than 30 minutes. In that case, the label is True/False depending on whether the duration was long (more than 30 minutes) or short (less than 30 minutes). This might help the business even more because the probability might indicate the relative proportion of commuter bikes to road bikes to have on hand at each station.


It is quite common to have to make a choice between multiple objectives. In some cases, we could create a weighted combination of these objectives as the label and train a single model. In other cases, you might find it helpful to train multiple models, one for each objective, and use different models in different scenarios. In yet other situations, the best approach might be to present to the end user the results of all the models and have the end user choose. It all depends on your business case.


In this use case, let’s decide that we need to build two models: one in which we predict the duration of a rental, and the other in which we predict the probability that the rental will be longer than 30 minutes. Then we have the end user make their decision based on the two predictions.





Exploring the Dataset to Find Features


If we believe that the duration will vary based on the station at which the bicycle is being rented, the day of the week, and the time of day, those could be our input features. Before we go ahead and create a model with these three features, though, it’s a good idea to verify that these factors do influence the label.


Coming up with features for a machine learning model is called feature engineering. Feature engineering is often the most important part of building accurate machine learning models, and it can be much more impactful than deciding which algorithm to use or tuning hyperparameters. Good feature engineering requires deep understanding of the data and the domain. It is often a process of hypothesis testing; you have an idea for a feature, you check to see whether it works (has mutual information with the label), and then you add it to the model. If it doesn’t work, you try the next idea.



Impact of station


To check whether the duration of a rental varies by station, you can visualize the result of the following query in Data Studio using the start_station_name as the dimension and duration as the metric:3



SELECT 
  start_station_name
  , AVG(duration) AS duration
 FROM `bigquery-public-data`.london_bicycles.cycle_hire
 GROUP BY start_station_name


This yields the result shown in Figure 9-2.


[image: It appears that there are a few stations that are associated with long-duration rentals.]
Figure 9-2. It appears that there are a few stations that are associated with long-duration rentals




From Figure 9-2, it is clear that a handful of stations are associated with long-duration rentals (over 3,000 seconds), but that the majority of stations have durations that lie in a relatively narrow range. Had all the stations in London been associated with durations within a narrow range, the station at which the rental commenced would not have been a good feature. But in this problem, as the graph in Figure 9-2 demonstrates, the start_station_name does matter.


Note that you cannot use end_station_name as a feature because at the time the bicycle is being rented, you won’t know to which station the bicycle is going to be returned. Because we are creating a machine learning model to predict events in the future, you need to be mindful of not using any columns that will not be known at the time the prediction is made. This time/causality criterion imposes constraints on what features you can use.





Day of week


For the next candidate features, the process is similar. You can check whether dayofweek (or, similarly, hourofday) matters:



SELECT 
  EXTRACT(dayofweek FROM start_date) AS dayofweek
  , AVG(duration) AS duration
FROM `bigquery-public-data`.london_bicycles.cycle_hire
GROUP BY dayofweek


Figure 9-3 shows the visualized result.


[image: Longer duration rentals tend to happen on weekends and in the morning and early afternoon.]
Figure 9-3. Longer duration rentals tend to happen on weekends and in the morning and early afternoon




From Figure 9-3, it is clear that the duration varies depending both on the day of the week and on the hour of the day. It appears that durations are longer on weekends (days 1 and 7) than on weekdays. Similarly, durations are longer early in the morning and in the midafternoon. Hence, both dayofweek and hourofday are good features.





Number of bicycles


Another potential feature is the number of bikes in the station. Perhaps, we hypothesize, people keep bicycles longer if there are fewer bicycles on rent at the station from which they rented. You can verify whether this is the case by using the following:



SELECT 
  bikes_count
  , AVG(duration) AS duration
FROM `bigquery-public-data`.london_bicycles.cycle_hire
JOIN `bigquery-public-data`.london_bicycles.cycle_stations
ON cycle_hire.start_station_name = cycle_stations.name
GROUP BY bikes_count


Figure 9-4 presents the result via Data Studio.


[image: Relationship between average duration of bicycle rides and the number of bicycles at the station the bicycle was rented from.]
Figure 9-4. Relationship between average duration of bicycle rides and the number of bicycles at the station the bicycle was rented from




In Figure 9-4, notice that the relationship is noisy with no visible trend (compared against hour-of-day, for example). This indicates that the number of bicycles is not a good feature. You can confirm this quantitatively by computing the Pearson correlation coefficient:



SELECT 
  CORR(bikes_count, duration) AS corr
FROM `bigquery-public-data`.london_bicycles.cycle_hire
JOIN `bigquery-public-data`.london_bicycles.cycle_stations
ON cycle_hire.start_station_name = cycle_stations.name


The result, –0.0039, indicates that the bikes_count and duration are essentially independent, because the Pearson coefficient will have an absolute value of 1.0 if they are linearly dependent, and 0.0 if they are linearly independent.


The Pearson correlation coefficient isn’t a perfect test for whether a feature is useful because it looks only at linear dependence. Sometimes, a feature might have a nonlinear dependence with the label. Still, the Pearson coefficient is a good starting point. Machine learning scientists often use more sophisticated statistical tests like mutual information, which computes the randomness of the feature with respect to the label.







Creating a Training Dataset


Based on the exploration of the london_bicycles dataset and the relationship of various columns to the label column, we can prepare the training dataset by pulling out the selected features and the label:



SELECT 
  duration
  , start_station_name
  , CAST(EXTRACT(dayofweek FROM start_date) AS STRING) as dayofweek
  , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire


Feature columns have to be either numeric (INT64, FLOAT64, etc.) or categorical (STRING). If the feature is numeric but needs to be treated as categorical, we need to cast it as a STRING—this explains why we cast the dayofweek and hourofday columns, which are integers (in the ranges 1 to 7 and 0 to 23, respectively), into strings.4


Tip

If preparing the data involves computationally expensive transformations or joins, it might be a good idea to save the prepared training data as a table so as to not repeat that work during experimentation. If the transformations are trivial but the query itself is long-winded, it might be convenient to avoid repetitiveness by saving it as a view.




In this case, the query is simple and short, and so (for clarity) we’ll simply repeat the query in later sections.





Training and Evaluating the Model


To train the machine learning model and save it into the dataset ch09eu,5 we need to call CREATE MODEL, which works similarly to CREATE TABLE:



CREATE OR REPLACE MODEL ch09eu.bicycle_model
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS
 
SELECT 
  duration
  , start_station_name
  , CAST(EXTRACT(dayofweek FROM start_date) AS STRING) as dayofweek
  , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire


Note that the label column and model type are specified in OPTIONS. Because the label is numeric, this is a regression problem. This is why we picked linear_reg as the model type (we discuss other supported model types later in the chapter). As discussed in the previous section, the SELECT statement above prepares the training dataset and pulls in the label and feature columns.



Evaluating the model


This query took 2.5 minutes and was trained in just one iteration,6 something we can learn by looking at the “Training” tab in the BigQuery section of the GCP Cloud Console. The mean absolute error (available from the evaluation tab) is 1,026 seconds, or about 17 minutes.7 This means that you should expect to be able to predict the duration of bicycle rentals with an average error of about 17 minutes.


In addition to looking at the evaluation tab, you can obtain the evaluation results by running the following SQL query:



SELECT * FROM ML.EVALUATE(MODEL ch09eu.bicycle_model)


Note that the query OPTIONS also identifies the model type. Here, we have picked the simplest regression model that BigQuery supports. We strongly encourage you to pick the simplest model and to spend a lot of time considering and bringing in alternate data choices, because the payoff of a new/improved input feature greatly outweighs the payoff of a better model. Only when you have reached the limits of your data experimentation should you try more complex models.





Combining days of the week


There are other ways that you could have chosen to represent the features that you have. For example, recall that when we explored the relationship between dayofweek and the duration of rentals, we found that durations were longer on weekends than on weekdays. Therefore, instead of treating the raw value of dayofweek as a feature, you can employ this insight by fusing several dayofweek values into the weekday category:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_weekday
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS
 
SELECT 
  duration
  , start_station_name
  , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 
        'weekday', 'weekend') as dayofweek
  , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire


This model results in a mean absolute error of 967 seconds, which is less than the 1,026 seconds for the original model. So let’s go with the weekend-weekday model instead.





Bucketizing the hour of day


Again, based on the relationship between hourofday and the duration, you can experiment with bucketizing the variable into four bins—(–inf,5), [5,10),8 [10,17), and [17,inf):



CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS
 
SELECT 
  duration
  , start_station_name
  , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday', 'weekend')
   as dayofweek
  , ML.BUCKETIZE(EXTRACT(hour FROM start_date), [5, 10, 17]) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire


ML.BUCKETIZE is an example of a preprocessing function supported by BigQuery—we are passing in the number to bucketize and the bounds of the bins with –infinity and +infinity being assumed to be on either extremity. This model results in a mean absolute error of 901 seconds, which is less than the 967 seconds for the weekday-weekend model. So let’s choose the bucketized model.  







Predicting with the Model


We can try out the prediction by passing in a set of rows for which to predict. For example, you can obtain the predicted duration of a rental in Hyde Park at 5 p.m. on a Tuesday by using this code:



-- INCORRECT! (see next section)
SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized, 
   (SELECT 'Park Lane , Hyde Park' AS start_station_name

           , 'weekday' AS dayofweek, '17' AS hourofday) 
)


This returns a predicted duration of 2,225 seconds, but this is wrong. Do you see the problem?



The need for TRANSFORM


In the previous prediction query, we had to pass in 'weekday' rather than '3' for dayofweek because the model was trained with dayofweek being either weekday or weekend. It is incorrect to pass in the raw data value of '17' for hourofday—we should be passing in the name of the bin that represents 5 p.m. The prediction code will need to carry out the same transformations on the raw data that the training code did in order to get these values correct.


Wouldn’t it be nice if BigQuery could remember the sets of transformations you did at the time of training and automatically apply them at the time of prediction? It can—that’s precisely what the TRANSFORM clause does!


You can even move the extraction of hour-of-day and day-of-week into the TRANSFORM clause so that the client code needs to give us only the timestamp at which the bicycle is being rented:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized
TRANSFORM(* EXCEPT(start_date)
         , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
'weekday', 'weekend') as dayofweek
         , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS

SELECT 
  duration
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


Use the TRANSFORM clause and formulate the machine learning problem in such a way that anyone requiring prediction needs to provide just the raw data.9


If a TRANSFORM clause is specified, the model is trained on the output of the TRANSFORM clause. So here, the TRANSFORM clause passes on all of the features and labels from the original SELECT query, except for the start_date, and then adds a couple of features (dayofweek and hourofday) extracted from the start_date.


The resulting model requires just the start_station_name and start_date to predict the duration. The transformations are saved and carried out on the provided raw data to create input features for the model.


Tip

The advantage of placing all preprocessing functions inside the TRANSFORM clause is that clients of the model do not need to know what kind of preprocessing has been carried out—BigQuery takes care of automatically applying the necessary transformations to the raw data during prediction. Best practice, therefore, is to have the SELECT statement in a training query return just the raw data, and have all transformations done in the TRANSFORM clause.




With the TRANSFORM clause in place, the prediction query becomes:



SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized, 
  (SELECT 'Park Lane , Hyde Park' AS start_station_name
           , CURRENT_TIMESTAMP() AS start_date) 
)


The result (yours will vary because presumably the timeofday and dayofweek are different) is something like the following:



	
		
				Row
				predicted_duration
				start_station_name
				start_date
				 
		

	
	
		
				1
				3498.804224263982
				Park Lane, Hyde Park
				2019-05-19 04:24:03.376064 UTC
				 
		

	






Generating batch predictions


You could also create a table of predictions for every hour at every station, starting at 3 a.m. the next day, using array generation:



DECLARE tomorrow_3am TIMESTAMP;
SET tomorrow_3am = TIMESTAMP_ADD(
  TIMESTAMP(DATE_ADD(CURRENT_DATE(), INTERVAL 1 DAY)),
  INTERVAL 3 HOUR);
 
WITH generated AS (
  SELECT
     name AS start_station_name
     , GENERATE_TIMESTAMP_ARRAY( 
         tomorrow_3am,
         TIMESTAMP_ADD(tomorrow_3am, INTERVAL 24 HOUR),
         INTERVAL 1 HOUR) AS dates
  FROM 
     `bigquery-public-data`.london_bicycles.cycle_stations
),
 
features AS (
  SELECT 
     start_station_name
     , start_date
  FROM 
    generated
    , UNNEST(dates) AS start_date
)
 
SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,
  (SELECT * FROM features)
)


This returns nearly 20,000 predictions, some of which include the following:



	
			
				6
				2707.621807505363
				Palace Gate, Kensington Gardens
				2019-05-19 15:00:00 UTC
		

		
				7
				2707.621807505363
				Palace Gate, Kensington Gardens
				2019-05-19 16:00:00 UTC
		

		
				8
				2571.887817969073
				Palace Gate, Kensington Gardens
				2019-05-19 17:00:00 UTC
		

		
				9
				2571.887817969073
				Palace Gate, Kensington Gardens
				2019-05-19 18:00:00 UTC
		

	



The entire process of machine learning, from creating the training dataset to training and prediction, has thus been carried out without the need to move the data out of BigQuery.







Examining Model Weights


A linear regression model predicts the output as a weighted sum of its inputs. You can examine (or export) these weights by using this command:



 SELECT * FROM ML.WEIGHTS(MODEL ch09eu.bicycle_model_bucketized)


Numeric features receive a single weight, whereas categorical features receive a weight for each possible value. For example, the dayofweek feature has the following weights:



	
		
				Row
				processed_input
				weight
				category_weights.category
				category_weights.weight
		

	
	
		
				2
				dayofweek
				null
				weekday
				1709.4363890323655
		

		
				 
				 
				 
				weekend
				2084.400311228229
		

	



This means that if the day is a weekday, the contribution of this feature to the overall predicted duration is 1,709 seconds (the weights that provide the optimal performance are not unique, so you might get a different value). The weights of different input features are not very meaningful—pretty much the only reason you might need to examine the weights in this manner is if you want to carry out predictions outside of BigQuery.


Tip

Do not use the magnitude or sign of the weights as a handy way to explain what the model is doing. Unless the input features are linearly independent (in real-world datasets, this is not very likely), the magnitudes and signs of the weights are not meaningful. For model explainability, consider using the What-If Tool or a model explainability package like LIME.




Because a linear model is so simple (it’s a weighted average of the inputs), it is possible to extract the model weights and write out the math to compute the prediction in, for example, a Python application:



def compute_regression(rowdict, 
         numeric_weights, scaling_df, categorical_weights):
  input_values = rowdict
  # numeric inputs
  pred = 0
  for column_name in numeric_weights['input'].unique():
     wt = numeric_weights[ numeric_weights['input'] == column_name
]['input_weight'].values[0]
     if column_name != '__INTERCEPT__':
       meanv = (scaling_df[ scaling_df['input'] == 
         column_name ]['mean'].values[0])
       stddev = (scaling_df[ scaling_df['input'] == 
         column_name ]['stddev'].values[0])
       scaled_value = (input_values[column_name] - meanv)/stddev
     else:
       scaled_value = 1.0
     contrib = wt * scaled_value
     pred = pred + contrib
  # categorical inputs
  for column_name in categorical_weights['input'].unique():
     category_weights = categorical_weights[ categorical_weights['input'] ==
column_name ]
     wt = category_weights[ category_weights['category_name'] ==
input_values[column_name] ]['category_weight'].values[0]
    pred = pred + wt
  return pred


In this code, the numeric_weights are obtained from the query:



SELECT
  processed_input AS input,
  model.weight AS input_weight
FROM
  ml.WEIGHTS(MODEL dataset.model) AS model


The scaling DataFrame, scaling_df, is obtained from the query:



SELECT
  input, min, max, mean, stddev
FROM
  ml.FEATURE_INFO(MODEL dataset.model) AS model


The categorical_weights are obtained from the query:



SELECT
  processed_input AS input,
  model.weight AS input_weight,
  category.category AS category_name,
  category.weight AS category_weight
FROM
  ml.WEIGHTS(MODEL dataset.model) AS model,
  UNNEST(category_weights) AS category


If you are doing logistic_reg, the output prediction is the result of a sigmoid function applied to the weighted average. Therefore, the output prediction can be obtained as follows:



def compute_classifier(rowdict, 
  numeric_weights, scaling_df, categorical_weights):
    pred=compute_regression(rowdict, numeric_weights, scaling_df,
categorical_weights)
    return (1.0/(1 + np.exp(-pred)) if (-500 < pred) else 0)





More-Complex Regression Models


A linear regression model is the simplest form of regression model—each input feature is assigned a weight, and the output is the sum of the weighted inputs plus a constant called the intercept. BigQuery supports dnn_regressor and xgboost models as well.



Deep Neural Networks


A Deep Neural Network (DNN) can be thought of as an extension of linear models in which each node in the first layer consists of a weighted sum of the input features transformed through a (typically nonlinear) function. The second layer consists of nodes, each of which is a weighted sum of the outputs of the first layer transformed through a nonlinear function, and so on, as demonstrated in Figure 9-5.


[image: A Deep Neural Network consists of layers of “nodes.” This example shows two layers between the inputs and outputs and each layer with three nodes, but we can have an arbitrary number of layers and an arbitrary number of nodes in each layer.]
Figure 9-5. A Deep Neural Network consists of layers of “nodes.” This example shows two layers between the inputs and outputs and each layer with three nodes, but we can have an arbitrary number of layers and an arbitrary number of nodes in each layer.




To train a DNN model with 64 nodes in the first layer and 32 nodes in the second layer, you would do the following:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_dnn
TRANSFORM(* EXCEPT(start_date)
           , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
           , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'], 
        model_type='dnn_regressor',
        hidden_units=[64, 32])
AS
 
SELECT 
  duration
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


This model took about 20 minutes to train. It ended with a mean absolute error of 1,016 seconds. This is, of course, worse than the 901 seconds that we achieved with the linear model. Sadly, this is par for the course—DNNs are notoriously finicky to train.


Tip

We strongly recommend that you begin with linear models, and only after you have finalized the set of features and transformations should you move on to experiment with more complex models. This is because with the dnn_regressor you will probably need to experiment with different numbers of layers and nodes (i.e., with hidden_units) and regularization settings (i.e., with l2_reg) to obtain good performance. Considering how finicky deep learning networks can be to train, varying feature representations at the same time is a surefire recipe for confusion.




One way to handle this finickiness is to perform hyperparameter tuning to search for optimal network parameters—this is supported by a full-fledged machine learning framework like Cloud AI Platform (CAIP).10 You might be better off doing this training there, or using AutoML (we explore both of these options later in this chapter), but for now let’s try using a smaller network:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_dnn
 TRANSFORM(* EXCEPT(start_date)
           , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
           , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'], 
        model_type='dnn_regressor',
         hidden_units=[10, 5])
AS
 
SELECT 
  duration
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


This yields better performance (981 seconds) but is still not as good as the linear model. More hyperparameter tuning is needed to get a DNN model that does better than the linear model we started out with. Also, in general a DNN provides superior performance only if there are many continuous features.





Gradient-boosted trees


Decision trees are a popular technique in machine learning because of their ready interpretability (they are essentially just combinations of if-then rules). However, decision trees tend to have poor accuracy because the range of functions they can approximate is limited and can be prone to overfitting. One way of improving the performance of decision trees (at the expense of explainability11) is to train an ensemble of decision trees, each of which is a poor predictor but when averaged together yield good performance. Boosting is a technique that is used to select trees in the ensemble, and XGBoost12 is a scalable, distributed way to build boosted decision trees on extremely large and sparse datasets. XGBoost used to be considered the state-of-the-art machine learning technique until the advent of deep learning networks circa 2015. It continues to be popular on structured data problems.


You can train an XGBoost machine learning model in BigQuery by selecting the boosted_tree_regressor model type:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_xgboost
TRANSFORM(* EXCEPT(start_date)
          , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 
     'weekday', 'weekend') as dayofweek
          , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'], 
        model_type='boosted_tree_regressor',
        max_tree_depth=4)
AS
 
SELECT 
  duration
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


The resulting model on this problem has poorer performance (1,363 seconds) than the linear model. The importance of the input features can be obtained by using this command:



SELECT * FROM ML.FEATURE_INFO(MODEL ch09eu.bicycle_model_xgboost)





Human insights and auxiliary data


Besides trying different model architectures and tuning the parameters of these models, we might consider adding new input features that incorporate human insights or provide auxiliary data to the machine learning model.


For example, in the previous model, we used ML.BUCKETIZE to split a continuous variable (the hour extracted from the timestamp) into four bins. Another extremely useful function is ML.FEATURE_CROSS, which can combine separate categorical features into an AND condition (this sort of relationship between features can be difficult for a machine learning model to learn). In our problem, intuition dictates that the combination of weekday and morning is a good predictor of bicycle rental duration, much more so than either weekday by itself or morning by itself. If so, it might be worthwhile to create a feature cross of the two features instead of treating the day and time separately:



ML.FEATURE_CROSS(STRUCT(
   IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 
       'weekday', 'weekend') as dayofweek, 
   ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), 
       [5, 10, 17]) AS hr
)) AS dayhr


In our models so far, we used start_station_name as an input to the model. This treats the stations as independent. In Chapter 8, we discussed the benefits of ST_GeoHash as a way to capture spatial proximity. Let’s, therefore, bring in the auxiliary information about the stations’ locations and use that as an additional input to the model.


Combining these two ideas, we now have the model training query:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_fc_geo
 TRANSFORM(duration
       , ML.FEATURE_CROSS(STRUCT(
           IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 
              'weekday', 'weekend') as dayofweek, 
           ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), 
              [5, 10, 17]) AS hr
         )) AS dayhr
       , ST_GeoHash(ST_GeogPoint(latitude, longitude), 4) AS start_station_loc4
       , ST_GeoHash(ST_GeogPoint(latitude, longitude), 6) AS start_station_loc6
       , ST_GeoHash(ST_GeogPoint(latitude, longitude), 8) AS start_station_loc8
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS
 
SELECT 
  duration
  , latitude
  , longitude
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire
JOIN `bigquery-public-data`.london_bicycles.cycle_stations
ON cycle_hire.start_station_id = cycle_stations.id


This model results in a mean absolute error of 898 seconds, an improvement over the 901 seconds we saw earlier. However, the improvement is relatively minor. Because of these diminishing returns, it might be time to move on. 









Building a Classification Model


In the previous section, we built machine learning models to predict the duration of a bicycle rental. However, over the span of one hour, many bicycles will be rented, and they will be rented for different durations. For example, take the distribution of bicycles that were rented at Royal Avenue 1, Chelsea, on weekdays in the hour starting at 14:00 (2:00 p.m.):



SELECT 
  APPROX_QUANTILES(duration, 10) AS q
FROM `bigquery-public-data`.london_bicycles.cycle_hire
WHERE 
  EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6
  AND EXTRACT(hour FROM start_date) = 14
  AND start_station_name = 'Royal Avenue 1, Chelsea'


Here’s the result:



	
		
				Row
				q
		

	
	
		
				1
				0
		

		
				 
				240
		

		
				 
				420
		

		
				 
				540
		

		
				 
				660
		

		
				 
				840
		

		
				 
				1020
		

		
				 
				1260
		

		
				 
				1500
		

		
				 
				2040
		

		
				 
				386460
		

	



80% of weekday rentals at this station lasted less than 1,500 seconds. Had this been the only prediction for you to go by, you would have stocked only commuter bikes at this station on those days. However, had you known that somewhere between 10% and 20% of bicycle rentals last longer than 1,800 seconds, you might have decided to stock this station so that 15% of the bicycles are road bikes. A classification model will allow us to predict the probability that a rental will last longer than 1,800 seconds.



Training


For simplicity, let’s take the set of features we used in the regression model and train a model to predict the probability that the rental will be for longer than 30 minutes:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_longrental
TRANSFORM(* EXCEPT(start_date)
          , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
     'weekday', 'weekend') as dayofweek
          , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['biketype'], model_type='logistic_reg')
AS
 
SELECT 
  IF(duration > 1800, 'roadbike', 'commuter') AS biketype
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


Note that the model_type now is logistic regression (logistic_reg)—this is the simplest model type for classification problems. For classification with DNNs or boosted-regression trees, use dnn_classifier or boosted_tree_classifier, respectively.


We created the label by thresholding rentals at 1,800 seconds and gave the two categories the names roadbike and commuter (this is similar to how we created a categorical variable weekend/weekday from the numeric variable dayofweek). We could also have used a Boolean value (True/False), but using the actual category name is clearer.


At the end of training, you can see that the error has decreased over seven iterations through the dataset and has now converged, as depicted in Figure 9-6 (because of random seeds, your results might be somewhat different).


There are actually two loss curves in Figure 9-6: one on the training data and the other on the evaluation data (BigQuery automatically split the data for us). Here, the curves are quite similar. If the evaluation curve were much higher than the loss curve, you’d have been worried about overfitting. Switching to the table view, you can verify that the two losses were, indeed, quite similar throughout the training:



	
		
				Iteration
				Training Data Loss
				Evaluation Data Loss
				Learn Rate
				Duration (seconds)
		

	
	
		
				6
				0.3072
				0.3024
				3.2000
				41.59
		

		
				5
				0.3078
				0.3029
				6.4000
				39.66
		

		
				4
				0.3119
				0.3069
				3.2000
				40.54
		

		
				3
				0.3240
				0.3195
				1.6000
				42.15
		

		
				2
				0.3576
				0.3543
				0.8000
				37.96
		

		
				1
				0.4502
				0.4483
				0.4000
				38.01
		

		
				0
				0.5812
				0.5805
				0.2000
				22.10
		

	



[image: The loss curve during model training has converged.]
Figure 9-6. The loss curve during model training has converged







Evaluation


The loss measure used in classification is cross-entropy, so that’s what the training curves depicted. You can look at more familiar evaluation metrics such as accuracy in the evaluation tab of the BigQuery web user interface (UI), as shown in Figure 9-7.


[image: The evaluation tab in the BigQuery web UI for a classification model.]
Figure 9-7. The evaluation tab in the BigQuery web UI for a classification model







Prediction


The prediction is similar to the regression case, except that you now get the probability of each class:



SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_longrental, 
  (SELECT 'Park Lane , Hyde Park' AS start_station_name
           , TIMESTAMP('2019-05-09 16:16:00 UTC') AS start_date) 
)


This yields the following:



	
		
				Row
				predicted_biketype
				predicted_biketype​_probs.label
				predicted_biketype​_probs.prob
				start_station_name
				start_date
		

	
	
		
				1
				commuter
				roadbike
				0.4419...
				Park Lane, Hyde Park
				2019-05-10 16:16:00 UTC
		

		
				 
				 
				commuter
				0.5580...
				 
				 
		

	



Thus, the probability that a rental at 4 p.m. on a weekday from Hyde Park will require a road bike is 0.44, or 44%. Ideally, then, you should have 44% of your bicycles at that station at that time be road bikes.





Choosing the Threshold


In our use case, the actual probability is what is of interest. Often, though, in classification problems, the desired output is the predicted class, not just the probability. Thus, the predicted output (see previous section) includes not only the probability but also the class with the highest probability. In a binary classification problem, this is the same as thresholding the probability at 0.5 and choosing the “positive” class if the probability is more than 0.5.


Recall is the percentage of actual true values (true positives / total positives) at a particular threshold point. If the recall is high, you’ll get almost all of the things you’re looking for. However, setting a threshold point with a high recall can be dangerous, because you might get a lot of false positives as well. If the threshold is 0, everything is chosen, so you get a perfect recall.


The other important metric is precision, which is the percentage of true positives over the whole dataset. In other words, it is a way of saying, “Given I’ve predicted this to be true, what is the probability that I’m right?” If you set the threshold to 0, you get the proportion of true data in the dataset. (In other words, you predict everything to be true, so if 10% of the values are true, your precision will be 10%. This isn’t a very good classifier.)


The aggregate metrics in the evaluation tab (e.g., accuracy=0.89) are calculated based on the 0.5 threshold.


If you wanted to ensure that you have a road bike in stock 50% of the times that one is required, you would want to have a recall of 0.5 because you’d need to capture half of the long rides. You can use the slider in the evaluation tab to change the threshold to 0.144, as shown in Figure 9-8, so that you obtain the desired recall metric. Note that this comes at the expense of precision; at this threshold, the model will give you a precision of 0.26—only 26% of the trips that we predict will require road bikes will actually be longer than 30 minutes.13


[image: Change the probability threshold to obtain a desired recall or precision.]
Figure 9-8. Change the probability threshold to obtain a desired recall or precision




For binary classification models, the desired threshold can be passed to ML.PREDICT:



SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_longrental, 
  (SELECT 'Park Lane , Hyde Park' AS start_station_name
           , TIMESTAMP('2019-05-09 16:16:00 UTC') AS start_date),
  STRUCT(0.144 AS threshold)
)


Here is the result:



	
		
				Row
				predicted_biketype
				predicted_biketype_​probs.label
				predicted_biketype_​probs.prob
				start_station_name
				start_date
		

	
	
		
				1
				roadbike
				roadbike
				0.4419...
				Park Lane, Hyde Park
				2019-05-09 16:16:00 UTC
		

	



Note that the predicted_biketype now is roadbike, even though the probability corresponding to roadbike is less than the default threshold of 0.5.  







Customizing BigQuery ML


By default, BigQuery ML makes reasonable choices for learning rate,14 scaling input features,15 splitting the data,16 and so on. The OPTIONS setting when creating a model provides a number of fine-grained ways to control the model creation. In this section, we discuss a few of them.



Controlling Data Split


By default on moderately sized datasets, BigQuery randomly selects 20% of the data and keeps it aside for evaluation. The training is carried out on only 80% of the data we provide. For tiny datasets (those under 500 rows), all of the data is used for training, and for large datasets (those over 50,000 rows), only 10,000 rows are used for evaluation. We can control what data is used for evaluation by means of three parameters: data_split_method, data_split_eval_fraction, and data_split_col, as listed in Table 9-2.



	Table 9-2. Controlling how data is split between training and evaluation
	
		
				Scenario
				data_split_method
				data_split_eval_fraction
				data_split_col
		

	
	
		
				Default
				auto_split
				0.2
				n/a
		

		
				Train on all the data
				no_split
				n/a
				n/a
		

		
				Keep aside a randomly selected 10% of data for evaluation
				random
				0.1
				n/a
		

		
				Specifically identify which rows are for evaluation
				custom
				n/a
				colname

			Rows with Boolean value of True/NULL for this column are kept aside for evaluation.
		

		
				Keep last 10% of rows for evaluation
				seq
				0.1

			(default is 0.2)
				colname

			Rows are ordered ASC on this column.
		

	



A better measure of how well the model will perform after it’s deployed is to train it on the first 80% (ordered by time) of bicycle rentals in the dataset and then test it on the remaining 20%.17 That is, rather than splitting randomly, you’d train on the older trips and test on the newer ones:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized_seq
TRANSFORM(* EXCEPT(start_date)
           , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
           , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
           , start_date—used to split the data
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg',
         data_split_method='seq', 
         data_split_eval_fraction=0.2, 
         data_split_col='start_date')
AS
 
SELECT 
  duration
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


Note that the SELECT and TRANSFORM clauses both emit the column used to split the data, and that OPTIONS includes the three parameters that control how the data is split.


The mean absolute error now is 860 seconds, but we cannot compare this number with the results obtained with the random split—evaluation metrics depend quite heavily on what data is used for evaluation, and because we are using a different evaluation dataset now, we cannot compare these results to the ones obtained earlier. Also, our earlier results were contaminated by leakage—for example, of Christmas days.





Balancing Classes


In our classification problem, less than 12% of rentals last longer than 1,800 seconds. This is an example of an unbalanced dataset. It can be helpful to weight the rarer class higher, and we can do that either by passing in an explicit array of class weights or by asking BigQuery to set the weights of classes based on inverse frequency.


Here’s an example of using this autobalancing method:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_longrental_balanced
TRANSFORM(* EXCEPT(start_date)
          , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
          , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
          , start_date
)
OPTIONS(input_label_cols=['biketype'], model_type='logistic_reg',
        data_split_method='seq', 
        data_split_eval_fraction=0.2, 
        data_split_col='start_date',
        auto_class_weights=True)
 
AS
 
SELECT 
  IF(duration > 1800, 'roadbike', 'commuter') AS biketype
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


Note that after you balance the weights, the probability that comes from the model is no longer an estimate of the actual predicted occurrence frequency. This is because the probability estimate that comes out of logistic regression is based on the frequency of occurrence in the data seen by the model, and we have artificially boosted the occurrence of rare events.





Regularization


Recall that in our data exploration, we discovered that except for a handful of stations which had unusually long durations, most of the stations had nearly identical durations, and many of these stations had very few rentals. Categorical features with such long-tailed distributions can cause overfitting. Overfitting is when the model learns noise (arbitrary variation) in the data, not the signal. In other words, the model can become so elaborate that it represents the dataset itself, not the underlying qualities of the dataset.


Regularization avoids overfitting because it penalizes complexity, in part by assigning penalties to large weight values. Large weight values are often a sign of overfitting because they can turn on suddenly when exactly one datapoint is encountered.


BigQuery ML supports two types of regularization: L1 and L2. L1 regularization tries to push individual weights to zero and is better for interpretability, whereas L2 tries to keep all the weights relatively similar and does better at controlling overfitting.18 You can control the amount of L1 or L2 regularization when creating the model:



CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized_seq_l2
TRANSFORM(* EXCEPT(start_date)
          , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 
                'weekday', 'weekend') as dayofweek
          , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
          , start_date—used to split the data
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg',
         data_split_method='seq', 
         data_split_eval_fraction=0.2, 
         data_split_col='start_date',
         l2_reg=0.1)
AS
 
SELECT 
  duration
  , start_station_name
  , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire


In this case, though, the resulting mean absolute error is 857 seconds, nearly identical to what was obtained without L2 regularization; this is most likely because we have a large-enough dataset and a model with few enough parameters to tune that overfitting was not happening. L2 regularization is generally considered a best practice, particularly if you don’t have a large amount of data or if you are using a more sophisticated model (such as a DNN) with many more parameters.







k-Means Clustering


The machine learning algorithms that we have considered so far have been supervised learning methods—we needed to provide BigQuery a label column. BigQuery also supports unsupervised learning  in that you can apply the k-means algorithm to group your data into clusters based on similarity. The algorithm is called k-means because it identifies k clusters, each of which is described in terms of the mean of the members of the cluster. Unlike supervised machine learning, which helps you predict the value of the label column when given values for the futures, unsupervised learning is descriptive. Use model_type=kmeans in BigQuery to understand your data in terms of centroids of the k clusters that have been determined from the data, and to make decisions about the members of each cluster based on the attributes of its centroid.



What’s Being Clustered?


The first step in using k-means clustering is to determine what is being clustered and why you are doing it. Because tables in BigQuery tend to be flattened and describe multiple aspects, it helps to be clear about what each member of the cluster represents.


Suppose that you have data in which each row represents a retail customer transaction. There are several ways in which you could do the clustering on this table, and which one you choose depends on what you want to do with the clusters:



		
	You could find natural groups among your customers. This is called customer segmentation. Data we use to perform the customer segmentation would be attributes that describe the customer making the transaction—these might include things like which store they visited, what items they bought, how much they paid, and so on. The reason to cluster these customers is that you want to understand what these groups of customers are like (these are called personas) so that you can design items that appeal to members of one of those groups by understanding the “centroid customer” of each cluster.

	

		
	You could find natural groups among the items purchased. These are called product groups. Data we use to perform the product groups would be attributes that describe the item(s) being purchased in the transaction—these might include things like who purchased them, when they were purchased, which store they were purchased at, and so forth. The reason to cluster these items is that you want to understand the characteristics of a product group so that you can learn how to reduce cannibalization or improve cross-selling.

	




In both of these cases, we are using clustering as a heuristic to help make decisions — it’s too difficult to design individualized products or understand product interactions, so you design for groups of customers or groups of items.


Note that for the specific use case of product recommendations (recommending products to customers or targeting customers for a product), it is better to train a matrix_factorization model as described later in this chapter. But for other decisions for which there is no readily available predictive analytics approach, k-means clustering might  give you a way to make a data-driven decision.





Clustering Bicycle Stations


Suppose that you often make decisions about bicycle stations—which stations to stock with new types of bicycles, which ones to repair, which ones to expand, and so on, and you want to make these decisions in a data-driven manner. This means that you are going to cluster bicycle stations, and you could group stations that are similar based on attributes such as the duration of rentals from the station, the number of trips per day from the station, the number of bike racks at the station, and the distance of the station from the city center. Because the first two attributes vary based on whether the day in question is a weekday or a weekend, let’s compute two values for those.


Because the query is quite long and cumbersome, let’s also save it into a table:



CREATE OR REPLACE TABLE ch09eu.stationstats AS
 
WITH hires AS (
  SELECT 
    h.start_station_name as station_name,
    IF(EXTRACT(DAYOFWEEK FROM h.start_date) BETWEEN 2 and 6,
               "weekday", "weekend") as isweekday,
    h.duration,
    s.bikes_count,
    ST_DISTANCE(ST_GEOGPOINT(s.longitude, s.latitude), 
                ST_GEOGPOINT(-0.1, 51.5))/1000 as distance_from_city_center
  FROM `bigquery-public-data.london_bicycles.cycle_hire` as h
  JOIN `bigquery-public-data.london_bicycles.cycle_stations` as s
  ON h.start_station_id = s.id
  WHERE EXTRACT(YEAR from start_date) = 2015
),
 
stationstats AS (
  SELECT 
     station_name,
     AVG(IF(isweekday = 'weekday', duration, NULL)) AS duration_weekdays,
     AVG(IF(isweekday = 'weekend', duration, NULL)) AS duration_weekends,    
     COUNT(IF(isweekday = 'weekday', duration, NULL)) AS numtrips_weekdays,
     COUNT(IF(isweekday = 'weekend', duration, NULL)) AS numtrips_weekends,    
     MAX(bikes_count) as bikes_count,
     MAX(distance_from_city_center) as distance_from_city_center
  FROM hires
  GROUP BY station_name
)
 
SELECT * 
from stationstats


The resulting table has 802 rows, one for each station operating in 2015, and looks something like this:



	
		
				Row
				station_name
				duration_​weekdays
				duration_​weekends
				numtrips_​weekdays
				numtrips_​weekends
				bikes_count
				distance_from_​city_center
		

	
	
		
				1
				Borough Road, Elephant & Castle
				1109.932...
				2125.095...
				5749
				1774
				29
				0.126...
		

		
				2
				Webber Street, Southwark
				795.439...
				938.357...
				6517
				1619
				34
				0.164...
		

		
				3
				Great Suffolk Street, The Borough
				802.530...
				1018.310...
				8418
				2024
				18
				0.193...
		

	






Carrying Out Clustering


As with supervised learning, carrying out clustering simply involves a CREATE MODEL statement on the table created in the previous section, but taking care to remove the station_name field because it uniquely identifies each station:



CREATE OR REPLACE MODEL ch09eu.london_station_clusters
OPTIONS(model_type='kmeans', 
        num_clusters=4, 
        standardize_features = true) AS
 
SELECT * EXCEPT(station_name)
from ch09eu.stationstats


The model_type is kmeans. If the num_clusters option is omitted, BigQuery will choose a reasonable value based on the number of rows in the table. The other option, standardize_features, is necessary for this dataset because the different columns all have very different ranges. The distance from the city center is on the order of a few kilometers, whereas the number of trips and duration are on the order of thousands. Therefore, it is a good idea to have BigQuery scale these values by making them zero-mean and unit-variance.





Understanding the Clusters


To find which cluster a particular station belongs to, use ML.PREDICT. Here’s a query to find the cluster of every station that has “Kennington” in its name:



SELECT * except(nearest_centroids_distance) 
FROM ML.PREDICT(MODEL ch09eu.london_station_clusters, 
(SELECT * FROM ch09eu.stationstats 
 WHERE REGEXP_CONTAINS(station_name, 'Kennington')))


This yields the following:



	
		
				Row
				CENTROID_​ID
				station_​name
				duration_​weekdays
				duration_​weekends
				numtrips_​weekdays
				numtrips_​weekends
				bikes_​count
				distance_​from_city_​center
		

	
	
		
				1
				2
				Kennington Road, Vauxhall
				1209.433...
				1720.598...
				8135
				2975
				26
				0.891...
		

		
				2
				2
				Kennington Lane Rail Bridge, Vauxhall
				979.391...
				1812.217...
				20263
				5014
				28
				2.175...
		

		
				3
				2
				Cotton Garden Estate, Kennington
				1572.919...
				997.949...
				5313
				1600
				14
				1.117...
		

		
				4
				3
				Kennington Station, Kennington
				1689.587...
				3579.285...
				4875
				1848
				15
				1.298...
		

	



A few of the Kennington stations are in centroid #2, whereas others are in centroid #3.19 To understand these groups, you can examine the centroid attributes:



SELECT * 
FROM ML.CENTROIDS(MODEL ch09eu.london_station_clusters)
ORDER BY centroid_id


This returns a table that contains one row for each attribute of the cluster:



	
		
				Row
				centroid_id
				feature
				numerical_value
				categorical_value​.category
				categorical_value​.value
		

	
	
		
				1
				1
				distance_from_city_center
				2.978...
				 
				 
		

		
				2
				1
				bikes_count
				10.013...
				 
				 
		

		
				3
				1
				numtrips_weekends
				8273.849...
				 
				 
		

	



You can pivot the table as follows:



CREATE TEMP FUNCTION cvalue(x ANY TYPE, col STRING) AS (
  (SELECT value from unnest(x) WHERE name = col)
);
 
WITH T AS (
  SELECT 
  centroid_id,
  ARRAY_AGG(STRUCT(feature AS name,
                 ROUND(numerical_value,1) AS value)
          ORDER BY centroid_id) AS cluster
  FROM ML.CENTROIDS(MODEL ch09eu.london_station_clusters)
  GROUP BY centroid_id
)
SELECT
  CONCAT('Cluster#', CAST(centroid_id AS STRING)) AS centroid,
  cvalue(cluster, 'duration_weekdays') AS duration_weekdays,
  cvalue(cluster, 'duration_weekends') AS duration_weekends,
  cvalue(cluster, 'numtrips_weekdays') AS numtrips_weekdays,
  cvalue(cluster, 'numtrips_weekends') AS numtrips_weekends,
  cvalue(cluster, 'bikes_count') AS bikes_count,
  cvalue(cluster, 'distance_from_city_center') AS distance_from_city_center
FROM T
ORDER BY centroid_id ASC


The pivot gives you the following result:



	
		
				Row
				centroid
				duration_​weekdays
				duration_​weekends
				numtrips_​weekdays
				numtrips_​weekends
				bikes_count
				distance_from_​city_center
		

	
	
		
				1
				Cluster#1
				1362.6
				1968.4
				25427.3
				8273.8
				10.0
				3.0
		

		
				2
				Cluster#2
				1193.5
				1738.1
				8457.4
				2584.3
				21.0
				3.0
		

		
				3
				Cluster#3
				1675.0
				2460.5
				4702.4
				2136.8
				14.9
				6.7
		

		
				4
				Cluster#4
				1124.0
				1543.1
				8519.0
				2342.1
				5.7
				4.1
		

	



To visualize this table, in the BigQuery web UI, click “Explore in Data Studio” and then select “Table with bars.” Make the centroid column the “dimension” and the remaining columns the metrics. Figure 9-9 shows the result.


[image: Cluster attributes.]
Figure 9-9. Cluster attributes




From Figure 9-9, you can see that Cluster #1 consists of extremely busy stations (see the number of trips) that are close to the city center, Cluster #2 consists of less busy stations close to the city center, Cluster #3 consists of stations that are far away from the city center and seem to be used more on weekends on long trips (these are the only stations with more weekend trips than weekday trips), and Cluster #4 consists of tiny stations (see bikes_count) in the outer core of the city, probably in residential areas. Based on these characteristics and some knowledge of London, we can come up with descriptive names for these clusters. Cluster 1 would probably be “Tourist areas,” Cluster 2 would be “Business district,” Cluster 3 would be “Day trips,” and Cluster 4 would be “Commuter stations.”





Data-Driven Decisions


You can now use these clusters to make different decisions. For example, suppose that you just received funding and can expand the bike racks. In which stations should you install extra capacity? If you didn’t have the clustering data, you might be tempted to go with stations with lots of trips and not enough bikes — stations in Cluster #1. But you have done the clustering and discovered that this group of stations mostly serves tourists. They don’t vote, so let’s put the extra capacity in Cluster #4 (commuter stations).


To take another example, suppose that you need to experiment with a new type of lock. In which cluster of stations should you conduct this experiment? The business district stations seem logical, and sure enough, those are the stations with lots of bikes and that are busy enough to support an A/B test. If, on the other hand, you want to stock some stations with road (racing) bikes, which ones should you select? Cluster #3, comprising stations that serve people who are going on day trips out of the city, seems like a good choice.


Obviously, you could have made these decisions individually by doing custom data analysis each time. But clustering the stations, coming up with descriptive names, and using the names to make decisions is much simpler and more explainable.







Recommender Systems


Collaborative filtering provides a way to generate product recommendations for users, or user targeting for products. The starting point is a table with three columns: a user ID, an item ID, and the rating that the user gave the product. This table can be sparse—users don’t need to rate all products. Based on just the ratings, the technique finds similar users and similar products and determines the rating that a user would give an unseen product. Then we can recommend the products with the highest predicted ratings to users, or target products at users with the highest predicted ratings.



The MovieLens Dataset


To illustrate recommender systems in action, let’s use the MovieLens dataset. This is a dataset of movie reviews released by GroupLens, a research lab in the Department of Computer Science and Engineering at the University of Minnesota, through funding from the US National Science Foundation.


In Cloud Shell, download the data and load it as a BigQuery table using the following:



curl -O 'http://files.grouplens.org/datasets/movielens/ml-20m.zip'
unzip ml-20m.zip
bq --location=EU load --source_format=CSV \
     --autodetect ch09eu.movielens_ratings ml-20m/ratings.csv
bq --location=EU load --source_format=CSV \
     --autodetect ch09eu.movielens_movies_raw ml-20m/movies.csv


The resulting ratings table has the following columns:



	
		
				Row
				userId
				movieId
				rating
				timestamp
				 
		

	
	
		
				1
				70141
				6219
				2.0
				1070338674
				 
		

		
				2
				70159
				2657
				2.0
				1427155558
				 
		

	



Here’s a quick exploratory query:



SELECT 
 COUNT(DISTINCT userId) numUsers,
 COUNT(DISTINCT movieId) numMovies,
 COUNT(*) totalRatings
FROM ch09eu.movielens_ratings


This reveals that the dataset consists of more than 138,000 users, nearly 27,000 movies, and a little more than 20 million ratings, confirming that the data has been loaded successfully.


Let’s examine the first few movies using the following query:



SELECT *
FROM ch09eu.movielens_movies_raw
WHERE movieId < 5


We can see that the genres column is a formatted string:



	
		
				Row
				movieId
				title
				genres
		

	
	
		
				1
				3
				Grumpier Old Men (1995)
				Comedy|Romance
		

		
				2
				4
				Waiting to Exhale (1995)
				Comedy|Drama|Romance
		

		
				3
				2
				Jumanji (1995)
				Adventure|Children|Fantasy
		

	



We can parse the genres into an array and rewrite the table as follows:



CREATE OR REPLACE TABLE ch09eu.movielens_movies AS
SELECT 
* REPLACE(SPLIT(genres, "|") AS genres)
FROM
ch09eu.movielens_movies_raw


Now the table looks as follows:



	
		
				Row
				movieId
				title
				genres
		

	
	
		
				1
				4
				Waiting to Exhale (1995)
				Comedy
		

		
				 
				 
				 
				Drama
		

		
				 
				 
				 
				Romance
		

		
				2
				3
				Grumpier Old Men (1995)
				Comedy
		

		
				 
				 
				 
				Romance
		

		
				3
				2
				Jumanji (1995)
				Adventure
		

		
				 
				 
				 
				Children
		

		
				 
				 
				 
				Fantasy
		

	



With the MovieLens data now loaded, we are ready to do collaborative filtering.





Matrix Factorization


Matrix factorization is a collaborative filtering technique that relies on factorizing the ratings matrix into two vectors called the user factors and the item factors. The user factors vector is a low-dimensional representation of a user_col, and the item factors vector similarly represents an item_col.


You can create the recommender model using the following:



-- not the final model; see movie_recommender_16
CREATE OR REPLACE MODEL ch09eu.movie_recommender
options(model_type='matrix_factorization',
        user_col='userId', item_col='movieId', rating_col='rating')
AS
 
SELECT 
userId, movieId, rating
FROM ch09eu.movielens_ratings


Note that you create a model as usual, except that the model_type is matrix_factorization and that  you need to identify which columns play what roles in the collaborative filtering setup.


The resulting model took an hour to train, and the training data loss starts out extremely bad and is driven down to near-zero over the next four iterations:20



	
		
				Iteration
				Training Data Loss
				Evaluation Data Loss
				Duration (seconds)
				 
		

	
	
		
				4
				0.5734
				172.4057
				180.99
				 
		

		
				3
				0.5826
				187.2103
				1,040.06
				 
		

		
				2
				0.6531
				4,758.2944
				219.46
				 
		

		
				1
				1.9776
				6,297.2573
				1,093.76
				 
		

		
				0
				63,287,833,220.5795
				168,995,333.0464
				1,091.21
				 
		

	



However, the evaluation data loss is quite high—much higher than the training data loss. This indicates that overfitting is happening, and so you need to add some regularization. Let’s do that next:



-- not final model. See movie_recommender_16
CREATE OR REPLACE MODEL ch09eu.movie_recommender_l2
options(model_type='matrix_factorization',
        user_col='userId', item_col='movieId', 
        rating_col='rating', l2_reg=0.2)
AS
 
SELECT 
userId, movieId, rating
FROM ch09eu.movielens_ratings


Now you get faster convergence (three iterations instead of five) and a lot less overfitting:



	
		
				Iteration
				Training Data Loss
				Evaluation Data Loss
				Duration (seconds)
				 
		

	
	
		
				2
				0.6509
				1.4596
				198.17
				 
		

		
				1
				1.9829
				33,814.3017
				1,066.06
				 
		

		
				0
				481,434,346,060.7928
				2,156,993,687.7928
				1,024.59
				 
		

	



By default, BigQuery sets the number of factors to be the log2 of the number of rows. In this case, because we have 20 million rows in the table, the number of factors would have been chosen to be 24. As with the number of clusters in k-means clustering, this is a reasonable default, but it is often worth experimenting with a number about 50% higher (36) and a number that is about a third lower (16):21



CREATE OR REPLACE MODEL ch09eu.movie_recommender_16
options(model_type='matrix_factorization',
        user_col='userId', item_col='movieId', 
        rating_col='rating', l2_reg=0.2, num_factors=16)
AS

SELECT 
userId, movieId, rating
FROM ch09eu.movielens_ratings


When we did that, we discovered that the evaluation loss was lower (0.97) with num_factors=16 than with num_factors=36 (1.67) or num_factors=24 (1.45). We could continue experimenting, but we are likely to see diminishing returns with further experimentation. So let’s pick this as the final matrix factorization model and move on.





Making Recommendations


With the trained model, you can now provide recommendations. For example, let’s find the best comedy movies to recommend to the user whose userId is 903:



SELECT * FROM
ML.PREDICT(MODEL ch09eu.movie_recommender_16, (
  SELECT 
     movieId, title, 903 AS userId
  FROM ch09eu.movielens_movies, UNNEST(genres) g
  WHERE g = 'Comedy'
))
ORDER BY predicted_rating DESC
LIMIT 5


In this query, we are calling ML.PREDICT, passing in the trained recommendation model and providing a set of movieId and userId on which to carry out the predictions. In this case, it’s just one userId (903), but all movies whose genre includes Comedy. Here is the result:



	
		
				Row
				predicted_rating
				movieId
				title
				userId
		

	
	
		
				1
				4.747231361947591
				107434
				Diplomatic Immunity (2009– )
				903
		

		
				2
				4.372639637398302
				62206
				Supermarket Woman (Sûpâ no onna) (1996)
				903
		

		
				3
				4.325021974040314
				122441
				Tales That Witness Madness (1973)
				903
		

		
				4
				4.296062517241643
				120313
				Otakus in Love (2004)
				903
		

		
				5
				4.277251207896746
				130347
				Bill Hicks: Sane Man (1989)
				903
		

	




Filtering out previously rated movies


Of course, this includes movies the user has already seen and rated in the past. Let’s remove them:



SELECT * FROM
ML.PREDICT(MODEL ch09eu.movie_recommender_16, (
  WITH seen AS (
     SELECT ARRAY_AGG(movieId) AS movies 
     FROM ch09eu.movielens_ratings
     WHERE userId = 903
  )
  SELECT 
     movieId, title, 903 AS userId
  FROM ch09eu.movielens_movies, UNNEST(genres) g, seen
  WHERE g = 'Comedy' AND movieId NOT IN UNNEST(seen.movies)
))
ORDER BY predicted_rating DESC
LIMIT 5


For this user, this happens to yield the same set of movies—the top predicted ratings didn’t include any of the movies the user has already seen.





Customer targeting


In the previous section, we looked at how to identify the top-rated movies for a specific user. Sometimes we have a product and need to find the customers who are likely to appreciate it. Suppose, for example, you want to get more reviews for movieId=96481, which has only one rating, and you want to send coupons to the 100 users who are likely to rate it the highest. We can identify those users by using the following:



SELECT * FROM
ML.PREDICT(MODEL ch09eu.movie_recommender_16, (
  WITH allUsers AS (
      SELECT DISTINCT userId
      FROM ch09eu.movielens_ratings
  )
  SELECT 
     96481 AS movieId, 
     (SELECT title FROM ch09eu.movielens_movies WHERE movieId=96481) title,
     userId
  FROM
     allUsers
))
ORDER BY predicted_rating DESC
LIMIT 100


The result gives us 100 users to target, the top 5 of whom we list here:



	
		
				Row
				predicted_rating
				movieId
				title
				userId
		

	
	
		
				1
				4.8586009640376915
				96481
				American Mullet (2001)
				54192
		

		
				2
				4.670093338552966
				96481
				American Mullet (2001)
				84240
		

		
				3
				4.544395037073204
				96481
				American Mullet (2001)
				109638
		

		
				4
				4.422718574118088
				96481
				American Mullet (2001)
				26606
		

		
				5
				4.410969328468145
				96481
				American Mullet (2001)
				138139
		

	






Batch predictions for all users and movies


What if you want to carry out predictions for every user and movie combination? Instead of having to pull distinct users and movies as in the previous query, a convenient function is provided to carry out batch predictions for all movieId and userId encountered during training:



SELECT * 
FROM ML.RECOMMEND(MODEL ch09eu.movie_recommender_16)


As seen in an earlier section, it is possible to filter out movies that the user has already seen and rated in the past. The reason previously viewed movies aren’t filtered out by default is that there are situations (think of restaurant recommendations, for example) for which it is perfectly expected that we would need to recommend restaurants the user has liked in the past.







Incorporating User and Movie Information


The matrix factorization approach does not use any information about users or movies beyond what is available from the ratings matrix. However, we will often have user information (such as the city they live in, their annual income, their annual expenditure, etc.), and we will almost always have more information about the products in our catalog. How do we incorporate this information into our recommendation model?


The answer lies in recognizing that the user factors and product factors that result from the matrix factorization approach end up being a concise representation of the information about users and products available from the ratings matrix. We can concatenate this information with other information we have available and train a regression model to predict the rating.



Obtaining user and product factors


You can get the user factors or product factors from ML.WEIGHTS. For example, here’s how to get the product factors for movieId=96481 and user factors for userId=54192:



SELECT 
   processed_input
   , feature
   , TO_JSON_STRING(factor_weights)
   , intercept
FROM ML.WEIGHTS(MODEL ch09eu.movie_recommender_16)
WHERE
(processed_input = 'movieId' AND feature = '96481')
OR
(processed_input = 'userId' AND feature = '54192')


The result is as follows:



	
		
				Row
				processed_input
				feature
				f0_
				intercept
		

	
	
		
				1
				movieId
				96481
				[{"factor”:16,"weight”:0.01274324364248563},{"factor”:15,"weight”:-0.026002830400362179},{"factor”:14,"weight”:-0.0088894978851240675},{"factor”:13,"weight”:0.010309411637259363},{"factor”:12,"weight”:-0.025990228913849212},{"factor”:11,"weight”:0.0037023423385396021},{"factor”:10,"weight”:-0.0016743710047063861},{"factor”:9,"weight”:0.018434530705228803},{"factor”:8,"weight”:-0.0016500835388799462},{"factor”:7,"weight”:-0.021652088589080184},{"factor”:6,"weight”:-0.00097969747732716637},{"factor”:5,"weight”:-0.056352201014532581},{"factor”:4,"weight”:-0.025090456181039382},{"factor”:3,"weight”:0.015317626028966519},{"factor”:2,"weight”:-0.00046084151232374118},{"factor”:1,"weight”:-0.0009461271544545048}]
				-1.1915305828542884
		

		
				2
				userId
				54192
				[{"factor”:16,"weight”:-0.66257902781387934},{"factor”:15,"weight”:-0.089502881890795027},{"factor”:14,"weight”:-0.14498342867805328},{"factor”:13,"weight”:0.57708118940369757},{"factor”:12,"weight”:-0.25409266698347688},{"factor”:11,"weight”:0.243523510689305},{"factor”:10,"weight”:0.48314159427498959},{"factor”:9,"weight”:0.21335694312220596},{"factor”:8,"weight”:0.34206958377350211},{"factor”:7,"weight”:-0.076313491055098021},{"factor”:6,"weight”:0.21214183741037482},{"factor”:5,"weight”:0.19387028511697624},{"factor”:4,"weight”:-0.42699681695332414},{"factor”:3,"weight”:0.046570444717220438},{"factor”:2,"weight”:0.25934273163373722},{"factor”:1,"weight”:-0.18839802656522864}]
				2.511409230366029
		

	



Multiplying these weights and adding the intercept is how you get the predicted rating for this combination of movieId and userId in the matrix factorization approach.


These weights also serve as a low-dimensional representation of the movie and user behavior. You can create a regression model to predict the rating given the user factors, product factors, and any other information that we know about our users and products.





Creating input features


The MovieLens dataset does not have any user information and has very little information about the movies themselves. To illustrate the concept, therefore, let’s create some synthetic information about users:



CREATE OR REPLACE TABLE ch09eu.movielens_users AS
SELECT
  userId
  , RAND() * COUNT(rating) AS loyalty
  , CONCAT(SUBSTR(CAST(userId AS STRING), 0, 2)) AS postcode
FROM
  ch09eu.movielens_ratings
GROUP BY userId


Input features about users can be obtained by joining the user table with the machine learning weights and selecting all of the user information and the user factors from the weights array:



WITH userFeatures AS (
  SELECT 
      u.*,
      (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS user_factors
  FROM
      ch09eu.movielens_users u
  JOIN
      ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
   ON
      processed_input = 'userId' AND feature = CAST(u.userId AS STRING)
)
 
SELECT * FROM userFeatures
LIMIT 5


This yields user features like these (you will need to remove the userId itself before feeding it into the regression model):



	
		
				Row
				userId
				loyalty
				postcode
				user_factors
		

	
	
		
				1
				65536
				72.51794801197904
				65
				0.038901538776462
		

		
				 
				 
				 
				 
				0.0019075355240976716
		

		
				 
				 
				 
				 
				0.011537776936285278
		

		
				 
				 
				 
				 
				-0.0322503841197857
		

		
				 
				 
				 
				 
				0.046464397209825425
		

		
				 
				 
				 
				 
				-0.015348467879503527
		

		
				 
				 
				 
				 
				0.05865111283285229
		

		
				 
				 
				 
				 
				0.04859058815259179
		

		
				 
				 
				 
				 
				0.017664456774125117
		

		
				 
				 
				 
				 
				0.006847553039523945
		

		
				 
				 
				 
				 
				0.012585216564478762
		

		
				 
				 
				 
				 
				-0.06506297976701378
		

		
				 
				 
				 
				 
				-0.005041156227839918
		

		
				 
				 
				 
				 
				-0.04187860699038322
		

		
				 
				 
				 
				 
				0.006216526560890197
		

		
				 
				 
				 
				 
				0.02711744261644579
		

	



Similarly, you can get product features for the movies data, except that you need to decide how to handle the genre because a movie could have more than one. If you decide to create a separate training row for each genre, you can construct the product features using the following:



WITH productFeatures AS (
  SELECT 
      p.* EXCEPT(genres)
      , g
      , (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS product_factors
  FROM
      ch09eu.movielens_movies p, UNNEST(genres) g
  JOIN
      ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
  ON
      processed_input = 'movieId' AND feature = CAST(p.movieId AS STRING)
)
 
SELECT * FROM productFeatures
LIMIT 5


This yields rows of the following form:



	
		
				Row
				movieId
				title
				g
				product_factors
		

	
	
		
				1
				1450
				Prisoner of the Mountains (Kavkazsky plennik) (1996)
				War
				0.9883690055578206
		

		
				 
				 
				 
				 
				1.3052751077485096
		

		
				 
				 
				 
				 
				-1.4000285383517228
		

		
				 
				 
				 
				 
				1.3901032474256991
		

		
				 
				 
				 
				 
				-0.32863748198986686
		

		
				 
				 
				 
				 
				-0.7688057246956399
		

		
				 
				 
				 
				 
				-1.1853591273232054
		

		
				 
				 
				 
				 
				-0.4553668299329251
		

		
				 
				 
				 
				 
				-0.14564591302024543
		

		
				 
				 
				 
				 
				-0.18609388556738163
		

		
				 
				 
				 
				 
				-0.3547198526732644
		

		
				 
				 
				 
				 
				0.06067380147330148
		

		
				 
				 
				 
				 
				-0.2733324088164271
		

		
				 
				 
				 
				 
				1.8302213060412562
		

		
				 
				 
				 
				 
				0.4753820155626278
		

		
				 
				 
				 
				 
				1.559946725190114
		

	



By combining these two WITH clauses and pulling in the rating corresponding to the movieId-userId combination (if it exists in the ratings table), you can create the training dataset:22



CREATE OR REPLACE TABLE ch09eu.movielens_hybrid_dataset AS
 
WITH userFeatures AS (
  SELECT 
      u.*,
      (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS user_factors
  FROM
      ch09eu.movielens_users u
  JOIN
      ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
  ON
      processed_input = 'userId' AND feature = CAST(u.userId AS STRING)
),
 
productFeatures AS (
  SELECT 
      p.* EXCEPT(genres)
      , g
      , (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS product_factors
  FROM
      ch09eu.movielens_movies p, UNNEST(genres) g
  JOIN
      ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
  ON
      processed_input = 'movieId' AND feature = CAST(p.movieId AS STRING)
)
 
SELECT p.* EXCEPT(movieId), u.* EXCEPT(userId), rating 
FROM productFeatures p, userFeatures u
JOIN
   ch09eu.movielens_ratings r
ON
   r.movieId = p.movieId AND r.userId = u.userId


One of the rows of this table looks like this:



	
		
				1
				Hunted, The (2003)
				Action
				2.6029616190628015
				692.7156232519949
				70
				0.026523240535672774
				2.0
		

	
	
		
				 
				 
				 
				0.33485455845698525
				 
				 
				0.0019319939217823622
				 
		

		
				 
				 
				 
				0.31628840722516194
				 
				 
				-0.0020145595411925534
				 
		

		
				 
				 
				 
				-0.3075233831543138
				 
				 
				-0.002646563034985453
				 
		

		
				 
				 
				 
				-0.4473419662482839
				 
				 
				-0.01594551937825673
				 
		

		
				 
				 
				 
				-1.0222758233057185
				 
				 
				-0.010801066706191506
				 
		

		
				 
				 
				 
				-0.42418301494313826
				 
				 
				4.772572135005211E-4
				 
		

		
				 
				 
				 
				-1.2447809221572947
				 
				 
				0.014766024570817101
				 
		

		
				 
				 
				 
				-0.20242685993451942
				 
				 
				-0.007500869241538576
				 
		

		
				 
				 
				 
				1.330350771422776
				 
				 
				-0.020383420117709883
				 
		

		
				 
				 
				 
				-0.3354935275410769
				 
				 
				-0.007863867111381763
				 
		

		
				 
				 
				 
				0.32404375319192513
				 
				 
				0.019901597021923123
				 
		

		
				 
				 
				 
				1.402657314320568
				 
				 
				-0.003178194776711233
				 
		

		
				 
				 
				 
				0.4728896971092763
				 
				 
				0.013146874239054253
				 
		

		
				 
				 
				 
				-0.5743444547904143
				 
				 
				-0.0017117741950437
				 
		

		
				 
				 
				 
				0.35632448579921905
				 
				 
				-0.030130776462043048
				 
		

	



Essentially, you have a couple of attributes about the movie, the product factors array corresponding to the movie, a couple of attributes about the user, and the user factors array corresponding to the user. These form the inputs to the “hybrid” recommendations model that builds off the matrix factorization model and adds in metadata about users and movies.





Training hybrid recommendation model


As of this writing, BigQuery ML cannot handle arrays as inputs to a regression model. Let’s therefore define a function to convert arrays to a struct for which the array elements are its fields:



CREATE OR REPLACE FUNCTION ch09eu.arr_to_input_3(a ARRAY<FLOAT64>)
RETURNS STRUCT<a1 FLOAT64, a2 FLOAT64, a3 FLOAT64> AS (
STRUCT(
    a[OFFSET(0)]
    , a[OFFSET(1)]
    , a[OFFSET(2)]
));


Now you can do the following:



SELECT 
  ch09eu.arr_to_input_3(a).*
FROM
(SELECT [34.23, 43.21, 63.21] AS a)


And here’s your result:



	
		
				Row
				a1
				a2
				a3
		

	
	
		
				1
				34.23
				43.21
				63.21
		

	



You can create a similar function named ch09eu.arr_to_input_16_users to convert the user factor array into named columns, and a similar function for the product factor arrays.23 Then you can tie together metadata about users and products with the user factors and product factors obtained from the matrix factorization approach to create a regression model to predict the rating:



CREATE OR REPLACE MODEL ch09eu.movielens_recommender_hybrid 
OPTIONS(model_type='linear_reg', input_label_cols=['rating'])
AS
 
SELECT
  * EXCEPT(user_factors, product_factors)
  , ch09eu.arr_to_input_16_users(user_factors).*
  , ch09eu.arr_to_input_16_products(product_factors).*
FROM
  ch09eu.movielens_hybrid_dataset


There is no point in looking at the evaluation metrics of this model, because the user information we used to create the training dataset was fake (note the RAND() in the creation of the loyalty column)—we did this exercise to demonstrate how it could be done. And of course, we could train a dnn_regressor model and optimize the hyperparameters if we want a more sophisticated model. But if we are going to go that far, it might be better to consider using AutoML tables, which we cover in the next section.









Custom Machine Learning Models on GCP


Whereas BigQuery ML provides you a choice of models24 that can be built and iterated over very quickly, AutoML provides you with a state-of-the-art, high-quality model for the task, with the trade-off being that the model takes hours or even days to train. Keras and TensorFlow provide lower-level control of machine learning model architectures and allow you to design, develop, and deploy custom machine learning models. We recommend that you begin with BigQuery ML for machine learning on structured or semi-structured data and, depending on your skill set and the value of the problem being solved, use AutoML or Keras to fine-tune the machine learning problem.



Hyperparameter Tuning


When you’re carrying out machine learning, there are many parameters that you choose rather arbitrarily. These include factors such as the learning rate, the level of L2 regularization, the number of layers and nodes in a neural network, the maximum depth of a boosted tree, and the number of factors of a matrix factorization model. It is often the case that choosing a different value for these could result in a better model (as measured by the error on a withheld evaluation dataset). Choosing a good value for these parameters is called hyperparameter tuning.



Hyperparameter tuning using scripting


Take the k-means clustering model. The evaluation tab in the BigQuery web UI (as well as SELECT * from ML.EVALUATE) shows the Davies-Bouldin index, which is useful for determining the optimal number of clusters supported by the data (the lower the number, the better the clustering).


For example, here’s a script to try varying the number of clusters:



DECLARE NUM_CLUSTERS INT64 DEFAULT 3;
DECLARE MIN_ERROR FLOAT64 DEFAULT 1000.0;
DECLARE BEST_NUM_CLUSTERS INT64 DEFAULT -1;
DECLARE MODEL_NAME STRING;
 
WHILE NUM_CLUSTERS < 8 DO
 
  SET MODEL_NAME = CONCAT('ch09eu.london_station_clusters_', 
                          CAST(NUM_CLUSTERS AS STRING));
 
  CREATE OR REPLACE MODEL MODEL_NAME
  OPTIONS(model_type='kmeans', 
           num_clusters=NUM_CLUSTERS, 
           standardize_features = true) AS
  SELECT * except(station_name)
  from ch09eu.stationstats;
 
  SET error = (SELECT davies_bouldin_index FROM ML.EVALUATE(MODEL MODEL_NAME));
  IF error < MIN_ERROR THEN
      SET MIN_ERROR = error;
      SET BEST_NUM_CLUSTERS = NUM_CLUSTERS;
  END IF;
  
 
  SET NUM_CLUSTERS = NUM_CLUSTERS + 1;
 
END WHILE





Hyperparameter tuning in Python


Alternatively, you could do this using Python and its multithreading capability to limit the number of concurrent queries:25



def train_and_evaluate(num_clusters: Range, max_concurrent=3):
    # grid search means to try all possible values in range
    params = []
    for k in num_clusters.values():
        params.append(Params(k))
     
    # run all the jobs
    print('Grid search of {} possible parameters'.format(len(params)))
    pool = ThreadPool(max_concurrent)
    results = pool.map(lambda p: p.run(), params)
    
    # sort in ascending order
    return sorted(results, key=lambda p: p._error)


In this code, the run() method of the Params class invokes the appropriate training and evaluation queries:



class Params:
    def __init__(self, num_clusters):
        self._num_clusters = num_clusters
        self._model_name = (
            'ch09eu.london_station_clusters_{}'.format(num_clusters))
        self._train_query = """
          CREATE OR REPLACE MODEL {}
          OPTIONS(model_type='kmeans', 
                  num_clusters={}, 
                  standardize_features = true) AS
          SELECT * except(station_name)
          from ch09eu.stationstats
        """.format(self._model_name, self._num_clusters)
        self._eval_query = """
          SELECT davies_bouldin_index AS error
          FROM ML.EVALUATE(MODEL {});
        """.format(self._model_name)
       self._error = None
        
    def run(self):
        bq = bigquery.Client(project=PROJECT)
        job = bq.query(self._train_query, location='EU')
        job.result() # wait for job to finish
        evaldf = bq.query(self._eval_query, location='EU').to_dataframe()
        self._error = evaldf['error'][0]
        return self


When searching in the range [3,9], you find that the number of clusters at which the error is minimized is 7:



ch09eu.london_station_clusters_7           1.551265     7
ch09eu.london_station_clusters_9           1.571020     9
ch09eu.london_station_clusters_6           1.571398     6
ch09eu.london_station_clusters_4           1.596398     4
ch09eu.london_station_clusters_8           1.621974     8
ch09eu.london_station_clusters_5           1.660766     5
ch09eu.london_station_clusters_3           1.681441     3





Hyperparameter tuning using AI Platform


In both of the hyperparameter tuning methods that we’ve considered so far, we tried out every possible value of a parameter that fell within a range. As the number of possible parameters grows, a grid search becomes increasingly wasteful. It is better to use a more efficient search algorithm, and that’s where Cloud AI Platform’s hyperparameter tuning can be helpful. You can use the hyperparameter tuning service for any model (not just TensorFlow). Let’s apply it to tuning the feature engineering and number of nodes of a DNN model.26


First, create a configuration file that specifies the ranges for each of the parameters, the number of concurrent queries, and the total number of trials:



trainingInput:
  scaleTier: CUSTOM
  masterType: standard   # See: https://cloud.google.com/ml-
engine/docs/tensorflow/machine-types
  hyperparameters:
     goal: MINIMIZE
     maxTrials: 50
     maxParallelTrials: 2
     hyperparameterMetricTag: mean_absolute_error
     params:
     - parameterName: afternoon_start
       type: INTEGER
       minValue: 9
       maxValue: 12
       scaleType: UNIT_LINEAR_SCALE
     - parameterName: afternoon_end
       type: INTEGER
       minValue: 15
       maxValue: 19
       scaleType: UNIT_LINEAR_SCALE
     - parameterName: num_nodes_0
       type: INTEGER
       minValue: 10
       maxValue: 100
       scaleType: UNIT_LOG_SCALE
     - parameterName: num_nodes_1
       type: INTEGER
       minValue: 3
       maxValue: 10
       scaleType: UNIT_LINEAR_SCALE


Note that we have specified minimum and maximum values for each of the parameters and the metric (mean absolute error) to be minimized. We are asking for optimization to happen using just 50 trials, whereas a grid search would have required trying out 4×4×90×7, or more than 10,000 options. So using the AI Platform hyperparameter tuning service results in a 200-fold savings!


Next, you create a Python program that invokes BigQuery to train and evaluate the model given a single set of these parameters:



def train_and_evaluate(args):
    model_name = "ch09eu.bicycle_model_dnn_{}_{}_{}_{}".format(
        args.afternoon_start, args.afternoon_end, args.num_nodes_0,
args.num_nodes_1
    )
    train_query = """
         CREATE OR REPLACE MODEL {}
         TRANSFORM(* EXCEPT(start_date)
                   , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
'weekday', 'weekend') as dayofweek
                   , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, {}, {}]) AS
hourofday
         )
         OPTIONS(input_label_cols=['duration'], 
                 model_type='dnn_regressor',
                 hidden_units=[{}, {}])
         AS
 
         SELECT 
           duration
           , start_station_name
           , start_date
         FROM `bigquery-public-data`.london_bicycles.cycle_hire
     """.format(model_name, 
                args.afternoon_start, 
                args.afternoon_end,
                args.num_nodes_0,
                args.num_nodes_1)
     logging.info(train_query)
     bq = bigquery.Client(project=args.project, 
                          location=args.location, 
                          credentials=get_credentials())
     job = bq.query(train_query)
     job.result() # wait for job to finish
     
     eval_query = """
         SELECT mean_absolute_error 
         FROM ML.EVALUATE(MODEL {})
     """.format(model_name)
     logging.info(eval_info)
     evaldf = bq.query(eval_query).to_dataframe()
     return evaldf['mean_absolute_error'][0]   


Note that this code uses a specific value for each of the tunable parameters and returns the mean absolute error, which is the metric being minimized.


This error value is then written out:



hpt.report_hyperparameter_tuning_metric(
       hyperparameter_metric_tag='mean_absolute_error',
       metric_value=error,
       global_step=1)


The training program is submitted to the AI Platform Training service:



gcloud ai-platform jobs submit training $JOBNAME \
  --runtime-version=1.13 \
  --python-version=3.5 \
  --region=$REGION \
  --module-name=trainer.train_and_eval \
  --package-path=$(pwd)/trainer \
  --job-dir=gs://$BUCKET/hparam/ \
  --config=hyperparam.yaml \
  —\
  --project=$PROJECT --location=EU


The resulting output, shown in the AI Platform console, contains the best parameters.







AutoML


AutoML consists of a family of products that provide a code-free way to automatically create and deploy state-of-the-art machine learning models. They tend to rely on applying a variety of feature engineering, hyperparameter tuning, neural architecture search, transfer learning, and ensembling methods to build models that have comparable quality to models manually crafted by top machine learning experts.


Tip

Use BigQuery ML to formulate your machine learning problems—to identify the features and labels, to quickly diagnose whether some new dataset improves accuracy, to detect mistakes in assumptions about time-dependence, and to determine the best way of representing some piece of domain knowledge. The fast iteration capability that BigQuery ML provides is invaluable, as is the ability to train models without moving data outside the data warehouse. After you have identified a feasible machine learning problem, you can use AutoML to get a very accurate model on the specific training dataset (features and labels). In our experience, AutoML infused with features that represent the insights of domain experts is hard to beat either in terms of accuracy or in terms of time to deployment.




AutoML Vision, for example, provides a web-based interface to upload images (or point to images on Google Cloud Storage), identify their labels, and launch the training of image classification or object detection models.


Because the data in BigQuery tends to be structured or semi-structured, the AutoML models that are relevant tend to be AutoML Natural Language (to do tasks such as text classification and entity detection), AutoML Tables (to do tasks such as regression, classification, and time-series forecasting on structured data), and AutoML Recommendations (to build state-of-the-art recommendation models).


To use AutoML Tables (Figure 9-10), simply visit the starting point on the GCP console, point it at a BigQuery table, select the feature columns and label column, and then click Train. Although training will take much longer (on the order of 12 to 24 hours), the resulting accuracy tends to be higher than what you might have achieved on the same dataset with BigQuery ML.


[image: AutoML Tables can start from a BigQuery table, the same training dataset that was built through iterative exploration and experimentation in BigQuery ML. In our experience, AutoML Tables applied to thoughtfully created training datasets provides state-of-the-art performance.]
Figure 9-10. AutoML Tables can start from a BigQuery table, the same training dataset that was built through iterative exploration and experimentation in BigQuery ML. In our experience, AutoML Tables applied to thoughtfully created training datasets provides state-of-the-art performance.







Support for TensorFlow


Even though BigQuery ML is scalable and convenient, and AutoML powerful and accurate, there are times when you might want to build your own custom models using Keras or TensorFlow. You might also find it advantageous to train models using TensorFlow and predict using BigQuery, or to train models in BigQuery but deploy into TensorFlow Serving.


It is possible to access BigQuery directly from TensorFlow code and to export BigQuery tables to TensorFlow records, transforming the data along the way. There is also interoperability between BigQuery and TensorFlow models—it is possible to load a TensorFlow model into BigQuery and to export a BigQuery model in TensorFlow’s SavedModel format. We cover these capabilities in this section.



TensorFlow’s BigQueryReader


A TensorFlow input pipeline can read from a BigQuery table into keyed TensorFlow Examples using BigQueryReader. First, create a features dictionary of the columns of interest:



features = dict(
  start_station_name=tf.FixedLenFeature([1], tf.string),
  duration=tf.FixedLenFeature([1], tf.int32))


Then create a reader specifying the timestamp at which the data is to be read (because the BigQuery table could be receiving streamed data while we are reading it) and the number of threads (partitions) in which the table is to be read:



reader = tf.contrib.cloud.BigQueryReader(project_id=PROJECT,
            dataset_id=DATASET,
            table_id=TABLE,
            timestamp_millis=TIME,
            num_partitions=NUM_PARTITIONS,
            features=features)


Finally, populate a queue with the BigQuery Table partitions, and use it to read the TensorFlow examples:



queue = tf.train.string_input_producer(reader.partitions())
row_id, examples_serialized = reader.read(queue)
examples = tf.parse_example(examples_serialized, features=features)


Although this works, there are several problems with this approach. In machine learning training, you will need to read batch_size records at once, shuffle the read order across workers, prefetch records, and so on. Hence, we recommend that you do not follow this approach.





Using pandas


If the BigQuery table is small enough, read it directly into an in-memory pandas DataFrame:



query = """
SELECT 
  start_station_name 
  , duration
FROM `bigquery-public-data`.london_bicycles.cycle_hire 
GROUP BY start_station_name
"""
df = bq.query(query, location='EU').to_dataframe()


Use the tf.data API to read from pandas:



tf.estimator.inputs.pandas_input_fn(
    df,
    batch_size=128,
    num_epochs=10,
    shuffle=True,
    num_threads=8,
    target_column='duration'
)





Apache Beam/Cloud Dataflow


If the table is too large to fit into memory, export the BigQuery data into TensorFlow records on Google Cloud Storage using Cloud Dataflow (see Chapter 5 for more details):



_ = (
           examples
           | 'get_tfrecords' >> beam.Map(lambda x: x['tfrecord'])
           | 'writetfr' >> beam.io.tfrecordio.WriteToTFRecord(
               os.path.join(options['outdir'], 'tfrecord', step)))


Each of the previous examples is created by pulling the necessary records from BigQuery:



 tfexample = tf.train.Example(
         features=tf.train.Features(
             feature={
                 'start_station_name': _bytes_feature(row['start_station_name']),
                 'duration': _int64_feature(row['duration']),
           }))


Along the way, if necessary, you can transform the records using tf.transform. Then, in TensorFlow, you can use the high-throughput methods provided by tf.data.tfrecorddataset to read in the data.





Exporting to TensorFlow


The TensorFlow ecosystem for serving is very powerful—it is possible to carry out predictions of TensorFlow models in a web browser using JavaScript and tensorflow.js, on an embedded device or mobile application using TensorFlow Lite, in Kubernetes clusters using Kubeflow, as a REST API using AI Platform Predictions, and more. Therefore, you might find it advantageous to export your BigQuery ML model as a TensorFlow SavedModel. After the BigQuery ML model has been exported, you can use it in any of the environments that can serve TensorFlow models.





Predicting with TensorFlow models


If you have trained a model in TensorFlow and exported it as a SavedModel, you can import the TensorFlow model into BigQuery and use the ML.PREDICT SQL function in BigQuery to make predictions. This is very useful if you want to make batch predictions (e.g., to make predictions for all the data collected in the past hour), given that any SQL query can be scheduled in BigQuery.


Importing the model into BigQuery is simply a matter of specifying a different model_type and pointing it at the model_path from which the SavedModel was exported (note the wildcard at the end to pick up the assets, vocabulary, etc.):



CREATE OR REPLACE MODEL ch09eu.txtclass_tf
OPTIONS (model_type='tensorflow',
         model_path='gs://bucket/some/dir/1549825580/*')


This creates a model in BigQuery that works like any built-in model, as illustrated in Figure 9-11. Here, the schema indicates that the required input to the model is called “input” and is a string.


[image: The schema of the imported TensorFlow model.]
Figure 9-11. The schema of the imported TensorFlow model




Given this schema, we can now do a prediction:



SELECT
  input,
  (SELECT AS STRUCT(p, ['github', 'nytimes', 'techcrunch'][ORDINAL(s)])
          prediction 
FROM
    (SELECT p, ROW_NUMBER() OVER() AS s FROM
      (SELECT * FROM UNNEST(dense_1) AS p)) 
  ORDER BY p DESC LIMIT 1).*
FROM ML.PREDICT(MODEL advdata.txtclass_tf,
(
SELECT 'Unlikely Partnership in House Gives Lawmakers Hope for Border Deal' AS
input
UNION ALL SELECT "Fitbit\'s newest fitness tracker is just for employees and
health insurance members"
UNION ALL SELECT "Show HN: Hello, a CLI tool for managing social media"
))


This is very powerful because we can now train a machine learning model, save it to Google Cloud Storage, import it into BigQuery, and carry out periodic predictions without the need to move the data for predictions out of the data warehouse.









Summary


In this chapter, we did a whirlwind tour of machine learning in BigQuery. We began by discussing different types of machine learning problems that work on structured and semi-structured data and how to train and predict machine learning models for all of those problems in BigQuery.


To train a regression model in BigQuery, we created a training dataset consisting of features and a label. Next, we were able to create a trained model, evaluate it, and then use it for predictions. We also iterated through a variety of improvements to the basic model and discussed how to extract the model weights. Finally, we examined how to train not just linear models but also DNNs and boosted regression trees.


Training a classification model in BigQuery was similar, except that the evaluation metrics were more sophisticated—we discussed how to choose the threshold in a binary classification problem to obtain a desired value of precision or recall.


We also looked at various customizations that might prove important on specific problems—things like changing the way the data is split between training and evaluation, balancing classes when one class is rarer than the other, and regularization to limit overfitting.


We also showed how to find clusters from structured data using the k-means algorithm and how to visualize the cluster attributes using Data Studio and make data-driven decisions.


The final type of machine learning model we examined in this chapter was on recommendation systems. We built a matrix factorization model to solve both product recommendation and customer targeting problems. We also discussed how to use the user factors and item factors that result from matrix factorization to train a more sophisticated model that includes data about users and products beyond their rating behavior.


Finally, we looked at the rest of the GCP ecosystem for custom models—hyperparameter tuning, AutoML, and TensorFlow. We discussed the interoperability between these different ways of building machine learning models, and when you would use which.



1 See https://en.wikipedia.org/wiki/Motion_picture_content_rating_system.
2 The individual words of the movie title might be more appropriate, as long as we take care to apply common Natural Language Processing techniques such as tokenization, stemming, and word embedding. Calculated features about the title of the movie might also prove useful; for example, the length of the title might have some predictive power, or whether the title has the word “spy” in it.
3 In the BigQuery web user interface, click Explore in Data Studio.
4 We could have treated these variables as continuous, but we would then be faced with unappealing choices about how to deal with the fact that dayofweek=7 is closer to dayofweek=1 than to dayofweek=5. For the record, some of these unappealing choices include: (a) storing the dayofweek twice, one in its current form and the other as MOD(dayofweek+3,7); and (b) replacing dayofweek by sin(2π * dayofweek / 7.0). They are unappealing because of how difficult they are to explain to stakeholders. If this is not a concern and you are solving a similar problem, it is worth experimenting with all three representations to see which one performs best.
5 Create it if necessary; it needs to be in the EU region because the data we are training on is in the EU.
6 This is because BigQuery is able to compute a closed-form solution to this linear regression problem. For more details, see https://oreil.ly/0svPQ.
7 Other error measures (mean squared error, mean squared log error, median absolute error, etc.) are also reported. For most regression problems, the mean absolute error strikes a good balance between insensitivity to outliers and sensitivity to iterative improvements. Use the mean absolute error unless you have a strong reason not to do so.
8 The interval [a,b) means that a is included and b is not; in other words, this is the interval a ≤ x < b.
9 Indeed, this is the default behavior of BigQuery if the input feature is a TIMESTAMP. Just as the default behavior of BigQuery to string values is to one-hot encode it, the default behavior of BigQuery when supplied a TIMESTAMP is to extract pieces such as day-of-week from it. Specifying the transformation ourselves gives us more granular control.
10 See https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview. Cloud AI Platform Predictions allows you to submit a machine learning training job where you specify a range of values to search within.
11 Many decision-tree packages provide a measure of “feature importance,” which loosely means how often a feature is used in the ensemble of trees. However, if you have two features that are correlated, the importance will be split between them, and so explainability suffers in real-world datasets.
12 XGBoost stands for eXtreme Gradient Boost, where gradient boosting is the technique proposed in the paper “Greedy Function Approximation: A Gradient Boosting Machine”, by Jerome H. Friedman.
13 The precision (or true positive rate) is the fraction of times that the model is correct when it predicted the positive class. In other words, if the model predicted roadbike 100 times, it will be correct 25.7 times. The recall is the fraction of positive instances that the model predicts correctly—that is, the fraction of times a road bike is required that the model predicts roadbike. For multiclass problems, the reported precision (or recall) corresponds to the mean precision when treating each category as a binary classification problem.
14 BigQuery estimates a good value through line search at the start of each iteration through the data.
15 Scale all numeric inputs to have zero mean and unit variance.
16 By default, randomly select 20% of the rows for evaluation.
17 This is better because it is possible that days on which station A is busy are the days on which station B is also busy. A random split might end up causing leakage of this information if Christmas 2009 at station A is in training and Christmas 2009 at station B is in evaluation. By controlling the split to happen so that the last few days of the dataset are not seen in training, we are able to more closely model how we plan to train our model on historical data and then deploy it.
18 For more information about L1 and L2, see www.robotics.stanford.edu/~ang/papers/icml04-l1l2.ps.
19 The k-means algorithm is sensitive to the initial starting point, and because starting points are chosen randomly, your results might be different.
20 The reason the duration of iterations swings back and forth is because the underlying optimization algorithm processes users in one iteration and movies in the next, and there are so many more users than movies.
21 This might sound weird. Why a third lower and not half? Essentially, the idea is that, starting from 16, 24 is 50% higher. We want to try a geometric progression of candidate values for num_factors so that we cover the candidate space quickly. If you are trying more than three possible num_factors, consider trying a sequence of num_factors, each of which is about sqrt(2) times higher than the previous. For example, you could try 4, 6, 8, 12, 16, 24, 32, 48, 64, and so on.
22 See 09_bqml/hybrid.sql in the GitHub repository for this book.
23 See 09_bqml/arr_to_input16.sql in the GitHub repository for this book.
24 By the time you are reading this, automl might well be one of the supported model types in BigQuery.
25 For the full code, see 09_bqml/hyperparam.ipynb in the GitHub repository for this book.
26 The full code is available at https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/09_bqml/hyperparam.ipynb.
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