Colophon

 Colophon

 The animal on the cover of Google BigQuery: The Definitive Guide is a Masai ostrich (Struthio camelus massaicus), a subspecies of the common ostrich—the largest bird in the world. They can be found grazing along the open plains and grassy savannas of Eastern Africa.

 The Masai ostrich measures between 7–9 feet tall, and although it has a wingspan of 6.5 feet, it cannot fly. Ostriches are well adapted to their flightlessness: though the filaments of their feathers grow in separately, and can’t be hooked together to create airfoils (as happens in flighted birds), ostrich wings remain useful in providing lift and stabilization when they make evasive maneuvers around predators. The ostrich has long, powerful legs that can propel it to maximum speeds of 45 miles per hour, making it the fastest bird on land as well as the fastest two-legged animal.

 The males are characterized by black plumage—with some white around the wings and tail—that contrast with their reddish neck and legs (which get brighter during mating). Females, on the other hand, are mostly brown and grey. And while most birds have four toes, the Masai ostrich only has two, one of which almost resembles a hoof. They travel in nomadic herds of up to 50 birds that can often include other grazing animals, such as antelopes or zebras.

 There is popular belief that when in danger, the ostrich will bury its head in sand as a defense mechanism. This myth is thought to have originated from the writings of Pliny the Elder, who may have actually been observing them ingesting sand and pebbles (which help them to digest their food since they have no teeth). Another theory is that he may have seen them rotating their eggs during incubation, which they keep buried in the sand. In any case, when threatened, the Masai ostrich will either run away or lower its body toward the ground. In extreme situations they will fight back, and have even been capable of killing lions.

 Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Jose Marzan, based on a black and white engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Chapter 1. What Is Google BigQuery?

Data Processing Architectures

Google BigQuery is a serverless, highly scalable data warehouse that comes with a built-in query engine. The query engine is capable of running SQL queries on terabytes of data in a matter of seconds, and petabytes in only minutes. You get this performance without having to manage any infrastructure and without having to create or rebuild indexes.

BigQuery has legions of fans. Paul Lamere, a Spotify engineer, was thrilled that he could finally talk about how his team uses BigQuery to quickly analyze large datasets: “Google’s BigQuery is *da bomb*,” he tweeted in February 2016. “I can start with 2.2Billion ‘things’ and compute/summarize down to 20K in < 1 min.” The scale and speed are just two notable features of BigQuery. What is more transformative is not having to manage infrastructure because the simplicity inherent in serverless, ad hoc querying can open up new ways of working.

Companies are increasingly embracing data-driven decision making and fostering an open culture where the data is not siloed within departments. BigQuery, by providing the technological means to enact a cultural shift toward agility and openness, plays a big part in increasing the pace of innovation. For example, Twitter recently reported in its blog that it was able to democratize data analysis with BigQuery by providing some of its most frequently used tables to Twitter employees from a variety of teams (Engineering, Finance, and Marketing were mentioned).

For Alpega Group, a global logistics software company, the increased innovation and agility offered by BigQuery were key. The company went from a situation in which real-time analytics was impossible to being able to provide fast, customer-facing analytics in near real time. Because Alpega Group does not need to maintain clusters and infrastructure, its small tech team is now free to work on software development and data capabilities. “That was a real eye opener for us,” says the company’s lead architect, Aart Verbeke. “In a conventional environment we would need to install, set up, deploy and host every individual building block. Here we simply connect to a surface and use it as required.”

Imagine that you run a chain of equipment rental stores. You charge customers based on the length of the rental, so your records include the following details that will allow you to properly invoice the customer:

		
	Where the item was rented

	

		
	When it was rented

	

		
	Where the item was returned

	

		
	When it was returned

	

Perhaps you record the transaction in a database every time a customer returns an item.1

From this dataset, you would like to find out how many “one-way” rentals occurred every month in the past 10 years. Perhaps you are thinking of imposing a surcharge for returning the item at a different store and you would like to find out what fraction of rentals would be affected. Let’s posit that wanting to know the answer to such questions is a frequent occurrence—it is important for you to be able to answer such ad hoc questions because you tend to make data-driven decisions.

What kind of system architecture could you use? Let’s run through some of the options.

Relational Database Management System

When recording the transactions, you are probably recording them in a relational, online transaction processing (OLTP) database such as MySQL or PostgreSQL. One of the key benefits of such databases is that they support querying using Structured Query Language (SQL)—your staff doesn’t need to use high-level languages like Java or Python to answer questions that arise. Instead, it is possible to write a query, such as the following, that can be submitted to the database server:

SELECT
 EXTRACT(YEAR FROM starttime) AS year,
 EXTRACT(MONTH FROM starttime) AS month,
 COUNT(starttime) AS number_one_way
FROM
 mydb.return_transactions
WHERE
 start_station_name != end_station_name
GROUP BY year, month
ORDER BY year ASC, month ASC

Ignore the details of the syntax for now; we cover SQL queries later in this book. Instead, let’s focus on what this tells us about the benefits and drawbacks of an OLTP database.

First, notice that SQL goes beyond just being able to get the raw data in database columns—the preceding query parses the timestamp and extracts the year and month from it. It also does aggregation (counting the number of rows), some filtering (finding rentals where the starting and ending locations are different), grouping (by year and month), and sorting. An important benefit of SQL is the ability to specify what we want and let the database software figure out an optimal way to execute the query.

Unfortunately, queries like this one are quite inefficient for an OLTP database to carry out. OLTP databases are tuned toward data consistency; the point is that you can read from the database even while data is simultaneously being written to it. This is achieved through careful locking to maintain data integrity. For the filtering on station_name to be efficient, you would need to create an index on the station name column. If the station name is indexed, then and only then does the database do special things to the storage to optimize searchability—this is a tradeoff, slowing writing down a bit to improve the speed of reading. If the station name is not indexed, filtering on it will be quite slow. Even if the station name is an index, this particular query will be quite slow because of all the aggregating, grouping, and ordering. OLTP databases are not built for this sort of ad hoc2 query that requires traversal through the entire dataset.

MapReduce Framework

Because OLTP databases are a poor fit for ad hoc queries and queries that require traversal of the entire dataset, special-purpose analyses that require such traversal might be coded in high-level languages like Java or Python. In 2003, Jeff Dean and Sanjay Ghemawat observed that they and their colleagues at Google were implementing hundreds of these special-purpose computations to process large amounts of raw data. Reacting to this complexity, they designed an abstraction that allowed these computations to be expressed in terms of two steps: a map function that processed a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merged all intermediate values associated with the same intermediate key.3 This paradigm, known as MapReduce, became hugely influential and led to the development of Apache Hadoop.

Although the Hadoop ecosystem began with a library that was primarily built in Java, custom analysis on Hadoop clusters is now typically carried out using Apache Spark. Spark programs can be written in Python or Scala, but among the capabilities of Spark is the ability to execute ad hoc SQL queries on distributed datasets.

So, to find out the number of one-way rentals, you could set up the following data pipeline:

		
	Periodically export transactions to comma-separated values (CSV) text files in the Hadoop Distributed File System (HDFS).

	

		
	For ad hoc analysis, write a Spark program that does the following:

	
			
		Loads up the data from the text files into a “DataFrame”

		

			
		Executes an SQL query, similar to the query in the previous section, except that the table name is replaced by the name of the DataFrame

		

			
		Exports the result set back to a text file

		

	

	

		
	Run the Spark program on a Hadoop cluster.

	

Although seemingly straightforward, this architecture imposes a couple of hidden costs. Saving the data in HDFS requires that the cluster be large enough. One underappreciated fact about the MapReduce architecture is that it usually requires that the compute nodes access data that is local to them. The HDFS must, therefore, be sharded across the compute nodes of the cluster. With both data sizes and analysis needs increasing dramatically but independently, it is often the case that clusters are underprovisioned or overprovisioned.4 Thus, the need to execute Spark programs on a Hadoop cluster means that your organization will need to become expert in managing, monitoring, and provisioning Hadoop clusters. This might not be your core business.

BigQuery: A Serverless, Distributed SQL Engine

What if you could run SQL queries as in a Relational Database Management System (RDBMS) system, obtain efficient and distributed traversal through the entire dataset as in MapReduce, and not need to manage infrastructure? That’s the third option, and it is what makes BigQuery so magical. BigQuery is serverless, and you can run queries without the need to manage infrastructure. It enables you to carry out analyses that process aggregations over the entire dataset in seconds to minutes.

Don’t take our word for it, though. Try it out now. Navigate to https://console.cloud.google.com/bigquery (logging into Google Cloud Platform and selecting your project if necessary), copy and paste the following query in the window,5 and then click the “Run query” button:

SELECT
 EXTRACT(YEAR FROM starttime) AS year,
 EXTRACT(MONTH FROM starttime) AS month,
 COUNT(starttime) AS number_one_way
FROM
 `bigquery-public-data.new_york_citibike.citibike_trips`
WHERE
 start_station_name != end_station_name
GROUP BY year, month
ORDER BY year ASC, month ASC

When we ran it, the BigQuery user interface (UI) reported that the query involved processing 2.51 GB and gave us the result in about 2.7 seconds, as illustrated in Figure 1-1.

[image: Running a query to compute the number of one-way rentals in the BigQuery web UI.]
Figure 1-1. Running a query to compute the number of one-way rentals in the BigQuery web UI

The equipment being rented out is bicycles, and so the preceding query totals up one-way bicycle rentals in New York month by month over the extent of the dataset. The dataset itself is a public dataset (meaning that anyone can query the data held in it) released by New York City as part of its Open City initiative. From this query, we learn that in July 2013, there were 815,324 one-way Citibike rentals in New York City.

Note a few things about this. One is that you were able to run a query against a dataset that was already present in BigQuery. All that the owner of the project hosting the data had to do was to give you6 “view” access to this dataset. You didn’t need to start up a cluster or log in to one. Instead, you just submitted a query to the service and received your results. The query itself was written in SQL:2011, making the syntax familiar to data analysts everywhere. Although we demonstrated on gigabytes of data, the service scales well even when it does aggregations on terabytes to petabytes of data. This scalability is possible because the service distributes the query processing among thousands of workers almost instantaneously.

Working with BigQuery

BigQuery is a data warehouse, implying a degree of centralization and ubiquity. The query we demonstrated in the previous section was applied to a single dataset. However, the benefits of BigQuery become even more apparent when we do joins of datasets from completely different sources or when we query against data that is stored outside BigQuery.

Deriving Insights Across Datasets

The bicycle rental data comes from New York City. How about joining it against weather data from the US National Oceanic and Atmospheric Administration (NOAA) to learn whether there are fewer bicycle rentals on rainy days?7

-- Are there fewer bicycle rentals on rainy days?
WITH bicycle_rentals AS (
 SELECT
 COUNT(starttime) as num_trips,
 EXTRACT(DATE from starttime) as trip_date
 FROM `bigquery-public-data.new_york_citibike.citibike_trips`
 GROUP BY trip_date
),

rainy_days AS
(
SELECT
 date,
 (MAX(prcp) > 5) AS rainy
FROM (
 SELECT
 wx.date AS date,
 IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp
 FROM
 `bigquery-public-data.ghcn_d.ghcnd_2016` AS wx
 WHERE
 wx.id = 'USW00094728'
)
GROUP BY
 date
)

SELECT
 ROUND(AVG(bk.num_trips)) AS num_trips,
 wx.rainy
FROM bicycle_rentals AS bk
JOIN rainy_days AS wx
ON wx.date = bk.trip_date
GROUP BY wx.rainy

Ignore the specific syntax of the query. Just notice that, in the bolded lines, we are joining the bicycle rental dataset with a weather dataset that comes from a completely different source. Running the query satisfyingly yields that, yes, New Yorkers are wimps—they ride the bicycle nearly 20% fewer times when it rains:8

Row num_trips rainy
 1 39107.0 false
 2 32052.0 true

What does being able to share and query across datasets mean in an enterprise context? Different parts of your company can store their datasets in BigQuery and quite easily share the data with other parts of the company and even with partner organizations. The serverless nature of BigQuery provides the technological means to break down departmental silos and streamline collaboration.

ETL, EL, and ELT

The traditional way to work with data warehouses is to start with an Extract, Transform, and Load (ETL) process, wherein raw data is extracted from its source location, transformed, and then loaded into the data warehouse. Indeed, BigQuery has a native, highly efficient columnar storage format9 that makes ETL an attractive methodology. The data pipeline, typically written in either Apache Beam or Apache Spark, extracts the necessary bits from the raw data (either streaming data or batch files), transforms what it has extracted to do any necessary cleanup or aggregation, and then loads it into BigQuery, as demonstrated in Figure 1-2.

[image: The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed on Cloud Dataflow and can handle both streaming and batch data using the same code.]
Figure 1-2. The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed on Cloud Dataflow and can handle both streaming and batch data using the same code

Even though building an ETL pipeline in Apache Beam or Apache Spark tends to be quite common, it is possible to implement an ETL pipeline purely within BigQuery. Because BigQuery separates compute and storage, it is possible to run BigQuery SQL queries against CSV (or JSON or Avro) files that are stored as-is on Google Cloud Storage; this capability is called federated querying. You can take advantage of federated queries to extract the data using SQL queries against data stored in Google Cloud Storage, transform the data within those SQL queries, and then materialize the results into a BigQuery native table.

If transformation is not necessary, BigQuery can directly ingest standard formats like CSV, JSON, or Avro into its native storage—an EL (Extract and Load) workflow, if you will. The reason to end up with the data loaded into the data warehouse is that having the data in native storage provides the most efficient querying performance.

We strongly recommend that you design for an EL workflow if possible, and drop to an ETL workflow only if transformations are needed. If possible, do those transformations in SQL, and keep the entire ETL pipeline within BigQuery. If the transforms will be difficult to implement purely in SQL, or if the pipeline needs to stream data into BigQuery as it arrives, build an Apache Beam pipeline and have it executed in a serverless fashion using Cloud Dataflow. Another advantage of implementing ETL pipelines in Beam/Dataflow is that, because this is programmatic code, such pipelines integrate better with Continuous Integration (CI) and unit testing systems.

Besides the ETL and EL workflows, BigQuery makes it possible to do an Extract, Load, and Transform (ELT) workflow. The idea is to extract and load the raw data as-is and rely on BigQuery views to transform the data on the fly. An ELT workflow is particularly useful if the schema of the raw data is in flux. For example, you might still be carrying out exploratory work to determine whether a particular timestamp needs to be corrected for the local time zone. The ELT workflow is useful in prototyping and allows an organization to start deriving insights from the data without having to make potentially irreversible decisions too early.

The alphabet soup can be confusing, so we’ve prepared a quick summary in Table 1-1.

	Table 1-1. Summary of workflows, sample architectures, and the scenarios in which they would be used
	
		
				Workflow
				Architecture
				When you’d use it
		

	
	
		
				EL
				Extract data from files on Google Cloud Storage.

			Load it into BigQuery’s native storage.

			You can trigger this from Cloud Composer, Cloud Functions, or scheduled queries.
				Batch load of historical data.

			Scheduled periodic loads of log files (e.g., once a day).
		

		
				ETL
				Extract data from Pub/Sub, Google Cloud Storage, Cloud Spanner, Cloud SQL, etc.

			Transform the data using Cloud Dataflow.

			Have Dataflow pipeline write to BigQuery
				When the raw data needs to be quality controlled, transformed, or enriched before being loaded into BigQuery.

			When the data loading needs to happen continuously, i.e., if the use case requires streaming.

			When you want to integrate with continuous integration/continuous delivery (CI/CD) systems and perform unit testing on all components.
		

		
				ELT
				Extract data from files in Google Cloud Storage.

			Store data in close-to-raw format in BigQuery.

			Transform the data on the fly using BigQuery views.
				Experimental datasets where you are not yet sure what kinds of transformations are needed to make the data usable.

			Any production dataset where the transformation can be expressed in SQL.
		

	

The workflows in Table 1-1 are in the order that we usually recommend.

Powerful Analytics

The benefits of a warehouse derive from the kinds of analyses that you can do with the data held within it. The primary way you interact with BigQuery is via SQL, and because BigQuery is an SQL engine, you can use a wide variety of Business Intelligence (BI) tools such as Tableau, Looker, and Google Data Studio to create impactful analyses, visualizations, and reports on data held in BigQuery. By clicking the “Explore in Data Studio” button in the BigQuery web UI, for example, we can quickly create a visualization of how our one-way bike rentals vary by month, as depicted in Figure 1-3.

BigQuery provides full-featured support for SQL:2011, including support for arrays and complex joins. The support for arrays in particular makes it possible to store hierarchical data (such as JSON records) in BigQuery without the need to flatten the nested and repeated fields. Besides the support for SQL:2011, BigQuery has a few extensions that make it useful beyond the core set of data warehouse use cases. One of these extensions is support for a wide range of spatial functions that enable location-aware queries, including the ability to join two tables based on distance or overlap criteria.10 BigQuery is, therefore, a powerful engine to carry out descriptive analytics.

[image: Visualization in Data Studio of how one-way rentals vary by month. Nearly 15% of all one-way bicycle rentals in New York happen in September.]
Figure 1-3. Visualization in Data Studio of how one-way rentals vary by month; nearly 15% of all one-way bicycle rentals in New York happen in September

Another BigQuery extension to standard SQL supports creating machine learning models and carrying out batch predictions. We cover the machine learning capability of BigQuery in detail in Chapter 9, but the gist is that you can train a BigQuery model and make predictions without ever having to export data out of BigQuery. The security and data locality advantages of being able to do this are enormous. BigQuery is, therefore, a data warehouse that supports not just descriptive analytics but also predictive analytics.

A warehouse also implies being able to store different types of data. Indeed, BigQuery can store data of many types: numeric and textual columns, for sure, but also geospatial data and hierarchical data. Even though you can store flattened data in BigQuery, you don’t need to—schemas can be rich and quite sophisticated. The combination of location-aware queries, hierarchical data, and machine learning make BigQuery a powerful solution that goes beyond conventional data warehousing and business intelligence.

BigQuery supports the ingest both of batch data and of streaming data. You can stream data directly into BigQuery via a REST API. Often, users who want to transform the data—for example, by adding time-windowed computations—use Apache Beam pipelines executed by the Cloud Dataflow service. Even as the data is streaming into BigQuery, you can query it. Having common querying infrastructure for both historical (batch) data and current (streaming) data is extremely powerful and simplifies many workflows.

Simplicity of Management

Part of the design consideration behind BigQuery is to encourage users to focus on insights rather than on infrastructure. When you ingest data into BigQuery, there is no need to think about different types of storage, or their relative speed and cost tradeoffs; the storage is fully managed. As of this writing, the cost of storage automatically drops to lower levels if a table is not updated for 90 days.11

We have already talked about how indexing is not necessary; your SQL queries can filter on any column in the dataset, and BigQuery will take care of the necessary query planning and optimization. For the most part, we recommend that you write queries to be clear and readable and rely on BigQuery to choose a good optimization strategy. In this book, we talk about performance tuning, but performance tuning in BigQuery consists mainly of clear thinking and the appropriate choice of SQL functions. You will not need to do database administration tasks like replication, defragmentation, or disaster recovery; the BigQuery service takes care of all that for you.

Queries are automatically scaled to thousands of machines and executed in parallel. You don’t need to do anything special to enable this massive parallelization. The machines themselves are transparently provisioned to handle the different stages of your job; you don’t need to set up those machines in any way.

Not having to set up infrastructure leads to less hassle in terms of security. Data in BigQuery is automatically encrypted, both at rest and in transit. BigQuery takes care of the security considerations behind supporting multitenant queries and providing isolation between jobs. Your datasets can be shared using Google Cloud Identity and Access Management (IAM), and it is possible to organize the datasets (and the tables and views within them) to meet different security needs, whether you need openness or auditability or confidentiality.

In other systems, provisioning infrastructure for reliability, elasticity, security, and performance often takes a lot of time to get right. Given that these database administration tasks are minimized with BigQuery, organizations using BigQuery find that it frees their analysts’ time to focus on deriving insights from their data.

How BigQuery Came About

In late 2010, the site director of the Google Seattle office pulled several engineers (one of whom is an author of this book) off their projects and gave them a mission: to build a data marketplace. We tried to craft the best way to come up with a viable marketplace. The chief issue was data sizes, because we didn’t want to provide just a download link. A data marketplace is infeasible if people need to download terabytes of data in order to work with it. How would you build a data marketplace that didn’t require users to start by downloading the datasets to their own machines?

Enter a principle popularized by Jim Gray, the database pioneer. When you have “big data,” Gray said, “you want to move the computation to the data, rather than move the data to the computation.” Gray elaborates:

The other key issue is that as the datasets get larger, it is no longer possible to just FTP or grep them. A petabyte of data is very hard to FTP! So at some point, you need indices and you need parallel data access, and this is where databases can help you. For data analysis, one possibility is to move the data to you, but the other possibility is to move your query to the data. You can either move your questions or the data. Often it turns out to be more efficient to move the questions than to move the data.12

In the case of the data marketplace that we were building, users would not need to download the datasets to their own machines if we made it possible for them to bring their computations to the data. We would not need to provide a download link, because users could work on their data without the need to move it around.13

We, the Googlers who were tasked with building a data marketplace, made the decision to defer that project and focus on building a compute engine and storage system in the cloud. After ensuring that users could do something with the data, we would go back and add data marketplace features.

In what language should users write their computation when bringing computation to the data on the cloud? We chose SQL because of three key characteristics. First, SQL is a versatile language that allows a large range of people, not just developers, to ask questions and solve problems with their data. This ease of use was extremely important to us. Second, SQL is “relationally complete,” meaning that any computation over the data can be done using SQL. SQL is not just easy and approachable. It is also very powerful. Finally, and quite important for a choice of a cloud computation language, SQL is not “Turing complete” in a key way: it always terminates.14 Because it always terminates, it is ok to host SQL computation without worrying that someone will write an infinite loop and monopolize all the compute power in a datacenter.

Next, we had to choose an SQL engine. Google had a number of internal SQL engines that could operate over data, including some that were very popular. The most advanced engine was called Dremel; it was used heavily at Google and could process terabytes’ worth of logs in seconds. Dremel was quickly winning people over from building custom MapReduce pipelines to ask questions of their data.

Dremel had been created in 2006 by engineer Andrey Gubarev, who was tired of waiting for MapReduces to finish. Column stores were becoming popular in the academic literature, and he quickly came up with a column storage format (Figure 1-4) that could handle the Protocol Buffers (Protobufs) that are ubiquitous throughout Google.

[image: Column stores can reduce the amount of data being read by queries that process all rows, but not all columns.]
Figure 1-4. Column stores can reduce the amount of data being read by queries that process all rows but not all columns

Although column stores are great in general for analytics, they are particularly useful for logs analysis at Google because many teams operate over a type of Protobuf that has hundreds of thousands of columns. If Andrey had used a typical record-oriented store, users would have needed to read the files row by row, thus reading in a huge amount of data in the form of fields that they were going to discard anyway. By storing the data column by column, Andrey made it so that if a user needed just a few of the thousands of fields in the log Protobufs, they would need to read only a small fraction of the overall data size. This was one of the reasons why Dremel was able to process terabytes’ worth of logs in seconds.

The other reason why Dremel was able to process data so fast was that its query engine used distributed computing. Dremel scaled to thousands of workers by structuring the computation as a tree, with the filters happening at the leaves and aggregation happening toward the root.

By 2010, Google was scanning petabytes of data per day using Dremel, and many people in the company used it in some form or another. It was the perfect tool for our nascent data marketplace team to pick up and use.

As the team productized Dremel, added a storage system, made it self-tuning, and exposed it to external users, the team realized that a cloud version of Dremel was perhaps even more interesting than their original mission. The team renamed itself “BigQuery,” following the naming convention for “Bigtable,” Google’s NoSQL database.

At Google, Dremel is used to query files that sit on Colossus, Google’s file store for storing data. BigQuery added a storage system that provided a table abstraction, not just a file abstraction. This storage system was key in making BigQuery simple to use and always fast, because it allowed key features like ACID (Atomicity, Consistency, Isolation, Durability) transactions and automatic optimization, and it meant that users didn’t need to manage files.

Initially, BigQuery retained its Dremel roots and was focused on scanning logs. However, as more customers wanted to do data warehousing and more complex queries, BigQuery added improved support for joins and advanced SQL features like analytic functions. In 2016, Google launched support for standard SQL in BigQuery, which allowed users to run queries using standards-compliant SQL rather than the awkward initial “DremelSQL” dialect.

BigQuery did not start out as a data warehouse, but it has evolved into one over the years. There are good things and bad things about this evolution. On the positive side, BigQuery was designed to solve problems people have with their data, even if they don’t fit nicely into data warehousing models. In this way, BigQuery is more than just a data warehouse. On the downside, however, a few data warehousing features that people expect, like a Data Definition Language (DDL; e.g., CREATE statements) and a Data Manipulation Language (DML; e.g., INSERT statements), were missing until recently. That said, BigQuery has been focusing on a dual path: first, adding differentiated features that Google is in a unique position to provide; and second, becoming a great data warehouse in the cloud.

What Makes BigQuery Possible?

From an architectural perspective, BigQuery is fundamentally different from on-premises data warehouses like Teradata or Vertica as well as from cloud data warehouses like Redshift and Microsoft Azure Data Warehouse. BigQuery is the first data warehouse to be a scale-out solution, so the only limit on speed and scale is the amount of hardware in the datacenter.

This section describes some of the components that go into making BigQuery successful and unique.

Separation of Compute and Storage

In many data warehouses, compute and storage reside together on the same physical hardware. This colocation means that in order to add more storage, you might need to add more compute power as well. Or to add more compute power, you’d also need to get additional storage capacity.

If everyone’s data needs were similar, this wouldn’t be a problem; there would be a consistent golden ratio of compute to storage that everyone would live by. But in practice, one or the other of the factors tends to be a limitation. Some data warehouses are limited by compute capacity, so they slow down at peak times. Other data warehouses are limited by storage capacity, so maintainers need to figure out what data to throw out.

When you separate compute from storage as BigQuery does, it means that you never need to throw out data, unless you no longer want it. This might not sound like a big deal, but having access to full-fidelity data is immensely powerful. You might decide you want to calculate something in a different way, so you can go back to the raw data to requery it. You would not be able to do this if you had discarded the source data due to space constraints. You might decide that you want to dig into why some aggregate value exhibits strange behavior. You couldn’t do this if you had deleted the data that contributed to the aggregation.

Scaling compute is equally powerful. BigQuery resources are denominated in terms of “slots,” which are, roughly speaking, about half of a CPU core (we cover slots in detail in Chapter 6). BigQuery uses slots as an abstraction to indicate how many physical compute resources are available. Queries running too slow? Just add more slots. More people want to create reports? Add more slots. Want to cut back on your expenses? Decrease your slots.

Because BigQuery is a multitenant system that manages large pools of hardware resources, it is able to dole out the slots on a per-query or per-user basis. It is possible to reserve hardware for your project or organization, or you can run your queries in the shared on-demand pool. By sharing resources in this way, BigQuery can devote very large amounts of computing power to your queries. If you need more computing power than is available in the on-demand pool, you can purchase more via the BigQuery Reservation API.

Several BigQuery customers have reservations in the tens of thousands of slots, which means that if they run only one query at a time, those queries can consume tens of thousands of CPU cores at once. With some reasonable assumptions about numbers of CPU cycles per processed row, it is pretty easy to see that these instances can process billions or even trillions of rows per second.

In BigQuery, there are some customers that have petabytes of data but use a relatively small amount of it on a daily basis. Other customers store only a few gigabytes of data but perform complex queries using thousands of CPUs. There isn’t a one-size-fits-all approach that works for all use cases. Fortunately, the separation of compute and storage allows BigQuery to accommodate a wide range of customer needs.

Storage and Networking Infrastructure

BigQuery differs from other cloud data warehouses in that queries are served primarily from spinning disks in a distributed filesystem. Most competitor systems need to cache data within compute nodes to get good performance. BigQuery, on the other hand, relies on two systems unique to Google, the Colossus File System and Jupiter networking, to ensure that data can be queried quickly no matter where it physically resides in the compute cluster.

Google’s Jupiter networking fabric relies on a network configuration where smaller (and hence cheaper) switches are arranged to provide the capability for which a much larger logical switch would otherwise be needed. This topology of switches, along with a centralized software stack and custom hardware and software, allows one petabit of bisection bandwidth within a datacenter. That is equivalent to 100,000 servers communicating at 10 Gb/sec, and it means that BigQuery can work without the need to colocate the compute and storage. If the machines hosting the disks are at the other end of the datacenter from the machines running the computation, it will effectively run just as fast as if the two machines were in the same rack.

The fast networking fabric comes in handy in two ways: to read in data from a disk, and to shuffle between query stages. As discussed earlier, the separation of compute and storage in BigQuery enables any machine within the datacenter to ingest data from any storage disk. This requires, however, that the necessary input data to the queries be read over the network at very high speeds. The details of shuffle are described in Chapter 6, but it suffices for now to understand that running complex distributed queries usually requires moving large amounts of data between machines at intermediate stages. Without a fast network connecting the machines doing the work, shuffle would become a bottleneck that slows down the queries significantly.

The networking infrastructure provides more than just speed: it also allows for dynamic provisioning of bandwidth. Google datacenters are connected through a backbone network called B4 that is software-defined to allocate bandwidth in an elastic manner to different users, and to provide reliable quality of service for high-priority operations. This is crucial for implementing high-performing, concurrent queries.

Fast networking isn’t enough, however, if the disk subsystem is slow or lacks enough scale. To support interactive queries, the data needs to be read from the disks fast enough so that they can saturate the network bandwidth available. Google’s distributed filesystem is called Colossus and can coordinate hundreds of thousands of disks by constantly rebalancing old, cold data and distributing newly written data evenly across disks.15 This means that the effective throughput is tens of terabytes per second. By combining this effective throughput with efficient data formats and storage, BigQuery provides the ability to query petabyte-sized tables in minutes.

Managed Storage

BigQuery’s storage system is built on the idea that when you’re dealing with structured storage, the appropriate abstraction is the table, not the file. Some other cloud-based and open source data processing systems expose the concept of the file to users, which puts users on the hook for managing file sizes and ensuring that the schema remains consistent. Even though creating files of an appropriate size for a static data store is possible, it is notoriously difficult to maintain optimal file sizes for data that is changing over time. Similarly, it is difficult to maintain a consistent schema when you have a large number of files with self-describing schemas (e.g., Avro or Parquet)—typically, every software update to systems producing those files results in changes to the schema. BigQuery ensures that all the data held within a table has a consistent schema and enforces a proper migration path for historical data. By abstracting the underlying data formats and file sizes from the user, BigQuery can provide a seamless experience so that queries are always fast.

There is another advantage to BigQuery managing its own storage: BigQuery can continue to become faster in a way that is transparent to the end user. For example, improvements in storage formats can be applied automatically to user data. Similarly, improvements in storage infrastructure become immediately available. Because BigQuery manages all of the storage, users don’t need to worry about backup or replication. Everything from upgrades and replication to backup and restoration are handled transparently and automatically by the storage management system.

One key advantage of working with structured storage at the abstraction level of a table (rather than of a file) and of providing storage management to these tables transparently to the end user is that tables allow BigQuery to support database-like features, such as DML. You can run a query that updates or deletes rows in a table and leave it to BigQuery to determine the best way to modify the storage to reflect this information. BigQuery operations are ACID; that is, all queries will commit completely or not at all. Rest assured that your queries will never see the intermediate state of another query, and queries started after another query completes will never see old data. You do have the ability to fine-tune the storage by specifying directives that control how the data is stored, but these operate at the abstraction level of tables, not files. For example, it is possible to control how tables are partitioned and clustered (we cover these features in detail in Chapter 7) and thereby improve the performance and/or reduce the cost of queries against those tables.

Managed storage is strongly typed, which means that data is validated at entry to the system. Because BigQuery manages the storage and allows users to interact with this storage only via its APIs, it can count on the underlying data not being modified outside of BigQuery. Thus, BigQuery can guarantee to not throw a validation error at read time about any of the data present in its managed storage. This guarantee also implies an authoritative schema, which is useful when figuring out how to query your tables. Besides improving query performance, the presence of an authoritative schema helps when trying to make sense of what data you have because a BigQuery schema contains not just type information but also annotations and table descriptions about how the fields can be used.

One downside of managed storage is that it is more difficult to directly access and process the data using other frameworks. For example, had the data been available at the abstraction level of files, you might have been able to directly run a Hadoop job over a BigQuery dataset. BigQuery addresses this issue by providing a structured parallel API to read the data. This API lets you read at full speed from Spark or Hadoop jobs, but it also provides extra features, like projection, filtering, and dynamic rebalancing.

Integration with Google Cloud Platform

Google Cloud follows the design principle called “separation of responsibility,” wherein a small number of high-quality, highly focused products integrate tightly with each other. It is, therefore, important to consider the entire Google Cloud Platform (GCP) when comparing BigQuery with other database products.

A number of different GCP products extend the usefulness of BigQuery or make it easier to understand how BigQuery is being used. We talk about many of these related products in detail in this book, but it is worth being aware of the general separation of responsibilities:

		
	StackDriver monitoring and audit logs provide ways to understand BigQuery usage in your organization.

	

		
	Cloud Dataproc provides the ability to read, process, and write to BigQuery tables using Apache Spark programs.

	

		
	Federated queries allow BigQuery to query data held in Google Cloud Storage, Cloud SQL (a relational database), Bigtable (a NoSQL database), Spanner (a distributed database), or Google Drive (which offers spreadsheets).

	

		
	Google Cloud Data Loss Prevention API helps you to manage sensitive data and provides the capability to redact or mask Personally Identifiable Information (PII) from your tables.

	

		
	Other machine learning APIs extend what it is possible on data held in BigQuery; for example, the Cloud Natural Language API can identify people, places, sentiment, and more in free-form text (such as those of customer reviews) held in some table column.

	

		
	AutoML Tables and AutoML Text can create high-performing custom machine learning models from data held in BigQuery tables.

	

		
	Cloud Catalog provides the ability to discover data held across your organization.

	

		
	You can use Cloud Pub/Sub to ingest streaming data and Cloud Dataflow to transform and load it into BigQuery. You can use Cloud Dataflow to carry out streaming queries as well. You can, of course, interactively query the streaming data within BigQuery itself.16

	

		
	Data Studio provides charts and dashboards driven from data in BigQuery. Third-party tools such as Tableau and Looker also support BigQuery as a backend.

	

		
	Cloud AI Platform provides the ability to train sophisticated machine learning programs from data held in BigQuery.

	

		
	Cloud Scheduler and Cloud Functions allow for scheduling or triggering of BigQuery queries as part of larger workflows.

	

		
	Cloud Composer allows for orchestration of BigQuery jobs along with tasks that need to be performed in Cloud Dataflow or other processing frameworks, whether on Google Cloud or on-premises in a hybrid cloud setup.

	

Taken together, BigQuery and the GCP ecosystem have features that span several other database products from other cloud vendors; you can use them as an analytics warehouse but also as an ELT system, a data lake (queries over files), or a source of BI. The rest of this book paints a broad picture of how you can use BigQuery in all of its aspects.

Security and Compliance

The integration with GCP goes beyond just interoperability with other products. Cross-cutting features provided by the platform provide consistent security and compliance.

The fastest hardware and most advanced software are of little use if you can’t trust them with your data. BigQuery’s security model is tightly integrated with the rest of GCP, so it is possible to take a holistic view of your data security. BigQuery uses Google’s IAM access-control system to assign specific permissions to individual users or groups of users. BigQuery also ties in tightly with Google’s Virtual Private Cloud (VPC) policy controls, which can protect against users who try to access data from outside your organization, or who try to export it to third parties. Both IAM and VPC controls are designed to work across Google Cloud products, so you don’t need to worry that certain products create a security hole.

BigQuery is available in every region where Google Cloud has a presence, enabling you to process the data in the location of your choosing. As of this writing, Google Cloud has more than two dozen datacenters around the world, and new ones are being opened at a fast rate. If you have business reasons for keeping data in Australia or Germany, it is possible to do so. Just create your dataset with the Australian or German region code, and all of your queries against the data will be done within that region.

Some organizations have even stronger data location requirements that go beyond where data is stored and processed. Specifically, they want to ensure that their data cannot be copied or otherwise leave their physical region. GCP has physical region controls that apply across products; you can create a “VPC service controls” policy that disallows data movement outside of a selected region. If you have these controls enabled, users will not be able to copy data across regions or export to Google Cloud Storage buckets in another region.

Summary

BigQuery is a highly scalable data warehouse that provides fast SQL analytics over large datasets in a serverless way. Although users appreciate the scale and speed of BigQuery, company executives often appreciate the transformational benefits that come from being able to do ad hoc querying in a serverless way, opening up data-driven decision making to all parts of the company.

To ingest data into BigQuery, you can use an EL pipeline (commonly used for periodic loads of log files), an ETL pipeline (commonly used when data needs to be enriched or quality controlled), or an ELT pipeline (commonly used for exploratory work).

BigQuery is designed for data analytics (OLAP) workloads and provides full-featured support for SQL:2011. BigQuery can achieve its scale and speed because it is built on innovative engineering ideas such as the use of columnar storage, support for nested and repeated fields, and separation of compute and storage, about which Google went on to publish papers. BigQuery is part of the GCP ecosystem of big data analytics tools and integrates tightly with both the infrastructure pieces (such as security, monitoring, and logging) and the data processing and machine learning pieces (such as streaming, Cloud DLP, and AutoML) of the platform.

1 In reality, you’ll need to start the record keeping at the time customers borrow the equipment, so that you will know whether customers have absconded with the equipment. However, it’s rather early in this book to worry about that!
2 In this book, we use “ad hoc” query to refer to a query that is written without any attempt to prepare the database ahead of time by using features such as indexes.
3 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” OSDI ’04: Sixth Symposium on Operating Systems Design and Implementation, San Francisco, CA (2004), pp. 137–150. Available at https://research.google.com/archive/mapreduce-osdi04.pdf.
4 On Google Cloud Platform, Cloud Dataproc (the managed Hadoop offering) addresses this conundrum in a different way. Because of the high bisectional bandwidth available within Google datacenters, Cloud Dataproc clusters are able to be job specific—the data is stored on Google Cloud Storage and read over the wire on demand. This is possible only if bandwidths are high enough to approximate disk speeds. Don’t try this at home.
5 For your copy and pasting convenience, you can find all of the code and query snippets in this book (including the query in the example) in the GitHub repository for this book.
6 Not you specifically. This is a public dataset, and the owner of the dataset gave this permission to all authenticated users. You can be less permissive with your data, sharing the dataset only with those within your domain or within your team.
7 This code can be downloaded from the book’s GitHub repository.
8 Keep in mind that both authors live in Seattle, where it rains 150 days each year.
9 You can find more details on the columnar storage format in “How BigQuery Came About”.
10 For example, to compute conversion metrics based on the distance that a customer would need to travel to purchase a product.
11 We believe all mentions of price to be correct as of the writing of this book, but please do refer to the relevant policy and pricing sheets, as these are subject to change.
12 Jim Gray on eScience: A Transformed Scientific Method”, from The Fourth Paradigm: Data-Intensive Scientific Discovery, ed. Tony Hey, Stewart Tansley, and Kristin Tolle (Microsoft, 2009), xiv. Available at https://oreil.ly/M6zMN.
13 Today, BigQuery does provide the ability to export tables and results to Google Cloud Storage, so we did end up building the download link after all! But BigQuery is not just a download link—most uses of BigQuery involve operating on the data in place.
14 SQL does have a RECURSIVE keyword, but like many SQL engines, BigQuery does not support this. Instead, BigQuery offers better ways to deal with hierarchical data by supporting arrays and nesting.
15 To read more about Colossus, see http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf and https://www.wired.com/2012/07/google-colossus/.
16 The separation of responsibility here is that Cloud Dataflow is better for ongoing, routine processing while BigQuery is better for interactive, ad hoc processing. Both Cloud Dataflow and BigQuery handle batch data as well as streaming data, and it is possible to run SQL queries within Cloud Dataflow.

About the Authors

Valliappa (Lak) Lakshmanan is Global Head for Data Analytics and AI Solutions on Google Cloud. His team builds software solutions for business problems using BigQuery and other Google Cloud data analytics and machine learning products. He is also the author of Data Science on the Google Cloud Platform, published by O’Reilly.

Jordan Tigani is Director of Product Management for BigQuery. He was one of the founding engineers on BigQuery and helped grow it to be one of the most successful products in Google Cloud. He wrote the first book on BigQuery and has also spoken widely on the subject. Jordan has 20 years of software development experience, ranging from Microsoft Research to machine learning startups.

Preface

Enterprises are becoming increasingly data driven, and a key component of any enterprise’s data strategy is a data warehouse—a central repository of integrated data from all across the company. Traditionally, the data warehouse was used by data analysts to create analytical reports. But now it is also increasingly used to populate real-time dashboards, to make ad hoc queries, and to provide decision-making guidance through predictive analytics. Because of these business requirements for advanced analytics and a trend toward cost control, agility, and self-service data access, many organizations are moving to cloud-based data warehouses such as Google BigQuery.

In this book, we provide a thorough tour of BigQuery, a serverless, highly scalable, low-cost enterprise data warehouse that is available on Google Cloud. Because there is no infrastructure to manage, enterprises can focus on analyzing data to find meaningful insights using familiar SQL.

Our goal with BigQuery has been to build a data platform that provides leading-edge capabilities, takes advantage of the many great technologies that are now available in cloud environments, and supports tried-and-true data technologies that are still relevant today. For example, on the leading edge, Google’s BigQuery is a serverless compute architecture that decouples compute and storage. This enables diverse layers of the architecture to perform and scale independently, and it gives data developers flexibility in design and deployment. Somewhat uniquely, BigQuery supports native machine learning and geospatial analysis. With Cloud Pub/Sub, Cloud Dataflow, Cloud Bigtable, Cloud AI Platform, and many third-party integrations, BigQuery interoperates with both traditional and modern systems, at a wide range of desired throughput and latency. And on the tried-and-true front, BigQuery supports ANSI-standard SQL, columnar optimization, and federated queries, which are key to the self-service ad hoc data exploration that many users demand.

Who Is This Book For?

This book is for data analysts, data engineers, and data scientists who want to use BigQuery to derive insights from large datasets. Data analysts can interact with BigQuery through SQL and via dashboarding tools like Looker, Data Studio, and Tableau. Data engineers can integrate BigQuery with data pipelines written in Python or Java and using frameworks such as Apache Spark and Apache Beam. Data scientists can build machine learning models in BigQuery, run TensorFlow models on data in BigQuery, and delegate distributed, large-scale operations to BigQuery from within a Jupyter notebook.

Conventions Used in This Book

The following typographical conventions are used in this book:

		Italic

		
	Indicates new terms, URLs, email addresses, filenames, and file extensions.

	

		Constant width

		
	Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	

		Constant width bold

		
	Shows commands or other text that should be typed literally by the user.

	

		Constant width italic

		
	Shows text that should be replaced with user-supplied values or values determined by context.

	

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/GoogleCloudPlatform/bigquery-oreilly-book.

If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Google BigQuery: The Definitive Guide by Valliappa Lakshmanan and Jordan Tigani (O’Reilly). Copyright 2020 Valliappa Lakshmanan and Jordan Tigani, 978-1-492-04446-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

		O’Reilly Media, Inc.

		1005 Gravenstein Highway North

		Sebastopol, CA 95472

		800-998-9938 (in the United States or Canada)

		707-829-0515 (international or local)

		707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/google_bigquery_tdg.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Follow the authors on Twitter: https://twitter.com/lak_gcp and https://twitter.com/jrdntgn

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

We (Lak and Jordan) were extremely fortunate in our reviewers—Elliott Brossard, Evan Jones, Graham Polley, Rebecca Ward, and Tegan Tigani reviewed every chapter of this book and made numerous suggestions for improvement. Elliott kept our SQL queries lean and clean. We benefited from Evan’s experience using BigQuery in Google Finance. Graham brought a valuable customer perspective to many of our discussions involving cost and regionalization. Rebecca kept us factual, and Tegan made sure our language was simple and straightforward. Besides these five, many Googlers (Chad Jennings, Haris Khan, Misha Brukman, Daniel Gundrum, Mosha Pashumansky, Amir Hormati, and Mingge Deng) reviewed parts of the manuscript in their areas of expertise. Any errors that remain are ours, of course.

Thanks also to our respective families, teammates, and managers (Rochana Golani and Sudhir Hasbe) for their support. Nicole Taché and Kristen Brown, our editors at O’Reilly, were a pleasure to work with. The text is immeasurably better because of the eagle-eyed work of Bob Russell, our copyeditor. This book was Saptarshi Mukherjee’s idea, and it was he who pushed the two of us to collaborate on a new BigQuery book. Finally, we would like to thank BigQuery users (and competitors!) for pushing us to make BigQuery better, and the BigQuery engineering team for making magic happen.

We are donating 100% of the royalties from this book to United Way of King County, where we both live. We strongly encourage you to get involved with a local charity to give, volunteer, and take action to help solve your community’s toughest challenges.

Chapter 9. Machine Learning in BigQuery

Artificial intelligence (AI) is the domain of computer science focused on building computational systems that are capable of acting autonomously. Over the years, many different subfields have arisen in AI, but an approach that has proven successful in recent years has been the idea of using large datasets to train general-purpose models (such as decision trees and neural networks) that can solve complex problems with great accuracy.

Teaching a computer based on examples is called supervised machine learning, and it can be carried out in BigQuery with the data remaining in place. In this chapter, we look at how to solve a wide variety of machine learning problems using BigQuery ML. Even though machine learning can be carried out in BigQuery, being able to use powerful, industry-standard machine learning frameworks such as TensorFlow on the data in BigQuery can give us access to a much wider variety of machine learning models and components. Hence, in this chapter we also look at the connections that exist between BigQuery and full-fledged machine learning frameworks.

What Is Machine Learning?

If we have collected historical data (and what is a data warehouse for, if not precisely this?), and the historical data contains the correct answers (called the “label”), we can train machine learning models on this data to predict the outcome for cases where the label is not yet known. For example, if we have a historical dataset of actual sales figures, we can train machine learning models to predict sales in the future. As with data analytics, machine learning in BigQuery is also carried out in SQL.

Formulating a Machine Learning Problem

For example, suppose that your business operates several hundred movie theaters all over the country, and you want to predict how many movie tickets will sell for a particular showtime at a particular theater—this sort of prediction is useful if you are trying to determine how to schedule movies. If you have data about the movies that have been run in the past, our machine learning problem might be formulated as follows: use data about the movies in our historical dataset to learn the number of tickets sold for each showtime in each theater. Then apply that machine learning model to a candidate movie to determine how much demand there will be for this movie at a specific showtime.

The attributes of the movie that you will use as inputs to the machine learning model are called the features of the model. The label is what you want to learn how to predict, and in this case, the label is the number of tickets sold. Following are some examples of features that you might want to include in your model:

		
	Motion picture content rating1 (for example, PG-13 means that parental guidance is recommended for children younger than 13)

	

		
	Is the showtime on a workday or on a weekend/holiday?

	

		
	At what time of day is the show (afternoon, evening, or night)?

	

		
	Movie genre (comedy, thriller, etc.)

	

		
	How long ago was the movie released (in days)?

	

		
	Average critics’ rating of the movie (scale of 1 to 10)

	

		
	Total box office receipts for the previous movie by this director, if applicable

	

		
	Total box office receipts for the previous movie by the lead actor, if applicable

	

		
	Theater location

	

		
	Theater type (e.g., multiplex, drive-in, mall, etc.)

	

Note that the title of the movie, as is, is not a good input to the machine learning model.2 Though Tinker Tailor Soldier Spy, a 2011 movie, might be part of our training dataset, we will typically not be interested in predicting the performance of that exact movie (for one, it has already run in our theater). Instead, our interest will be in predicting the performance of, say, Deep Water Horizon, another thriller with similar critical reviews that was released in 2016.

Hence, the machine learning model needs to be based on features of the movie (things that describe the movie), not things that uniquely identify it. This way, our model might guess that Deep Water Horizon, if run at similar timings to Tinker Tailor Soldier Spy, will perform similarly because the movies are in the same genre, and because the critics’ rating of the movies are similar.

The first four features (rating, type of showtime, showtime, genre) are categorical features, by which we mean that they take one of a finite number of possible values. In BigQuery, any feature that is a string is considered a categorical feature. If the database representation of categorical features happens to be some other type (for example, the showtime might be a number such as 1430 or a timestamp), you should cast it as a string in your query. The next four features (time since release, critics’ ratings, box office receipts for director and lead actor) are numeric features, by which we mean that they are numbers with meaningful magnitudes. The last two features (theater type and location) will need to be represented in special ways; we discuss choices later in this chapter.

The label, or the correct answer for the prediction problem, is given by the number of tickets sold historically. During the training of the machine learning model, BigQuery is shown the input features and corresponding labels and creates the model that captures this information (see Figure 9-1). Then, during prediction, the trained machine learning model can be applied on a new set of input features to gain an estimate of how many tickets we can expect to sell if we schedule the movie at a specific time and location.

[image: During training, the model is shown features and their corresponding labels. Then the trained model can be used for prediction. Given a set of features, the model predicts a value for the label.]
Figure 9-1. During training, the model is shown features and their corresponding labels. Then the trained model can be used for prediction. Given a set of features, the model predicts a value for the label.

Types of Machine Learning Problems

We tend to use different machine learning models and techniques depending on the nature of the input features and the labels. In this subsection, we’ll provide brief definitions of the types of problems. We cover the solutions to these problems in greater detail in the rest of this chapter.

Regression

In the example in the previous section, we wanted to predict the number of tickets that would be sold for a particular showing of a movie. In that case, the label is a number, and so the type of machine learning problem it represents is called regression.

Classification

If the label is a categorical variable, the type of machine learning problem is called classification. The output of a classification model is the probability that a row belongs to a label value. For example, if you were to train a machine learning model to predict whether a show will sell out, you would be using a classification model, and the output of the model would be the probability that a show sells out.

Many classification problems have two classes: the show sells out or it doesn’t, a customer buys the item or they don’t, the flight is late or it isn’t. These are called binary classification problems. In such cases, the label column should be True or False, or it should be 1 or 0. The prediction from the model will be the probability that the label is True. We typically threshold the probability at 0.5 to determine the most likely class.

A classification problem can have multiple classes. For example, revisiting our bike rental scenario, you might want to predict the station at which a bicycle will be returned, and because there are hundreds of possible values for this categorical label, this is a multiclass classification problem. The output of such a machine learning model will be a set of probabilities, one for each station in the network, and the sum of these probabilities will be 1.0. In a multiclass problem, we typically care about the top three or top five predictions, not about the actual value of the probability.

Recommender

The special case of multiclass classification for which the task is to recommend the “next” product based on ratings or past purchases is called a recommender system. Although a recommendation problem could be solved in the standard way that all multiclass classification problems are, special machine learning model types have been built for these problems, and it is preferable to use these more specific model types. Recommender systems are also the preferable way to address customer targeting problems—to find customers who will like a product or promotional offer.

Clustering

If we don’t have a label at all, we cannot do supervised learning. We could find natural groupings within the data; this type of ML problem is called clustering. We might employ clustering of customer features to perform customer segmentation, for example. Otherwise, we can use the Cloud Data Labeling Service to annotate our training dataset with human labelers as a precursor to carrying out supervised learning.

Unstructured data

In the discussion so far, we have assumed that our data consists of structured or semi-structured data. If some of the input features are unstructured (e.g., images or natural language text), consider using a preexisting model such as Cloud Vision API or Cloud Natural Language to process the unstructured data in question, and use the output of these APIs as numeric or categorical inputs to the machine learning model. For example, you could use the Natural Language API to identify key entities in customer emails or the sentiment of customer reviews, and use the entities as categorical variables and the sentiment as a numeric feature.

You also might be able to turn unstructured data into structured data through string functions or machine learning APIs. Splitting a text field into individual words and treating the presence/absence of individual words as features is a common technique, often called bag of words. In the movie title example, if you had a movie called The Spy Who Loved Me, you might have two features, has_spy and has_love, as True, and all other features would be false (you’d probably drop “the,” “Who,” and “Me” as being too common to be helpful in prediction). Or you might use the number of words in the title (maybe wordy titles are more likely to be indie films and more likely to appeal to different audiences).

If the label itself is unstructured (e.g., you want the model to craft the ideal response to customer questions based on a dataset of historical responses), this is a natural language generation problem—it’s outside the scope of what BigQuery can handle.

Summary of model types

Table 9-1 summarizes the machine learning problem types. We discuss the BigQuery model types in the following sections.

	Table 9-1. Machine learning model types and how to implement them in BigQuery
	
		
				Problem characteristic
				Machine learning problem type
				BigQuery model_type
		

	
	
		
				Labels unavailable and data cannot be labeled
				Clustering
				kmeans
		

		
				Label is a number
				Regression
				linear_reg

			dnn_regressor

			boosted_tree_regressor
		

		
				Recommend products to users
				Recommender
				matrix_factorization
		

		
				Recommend users for product
				Customer targeting
				matrix_factorization
		

		
				Label is 1/0, True/False (or two categories)
				Binary classification
				logistic_reg

			dnn_classifier

			boosted_tree_classifier
		

		
				Label is in a fixed set of strings
				Multiclass classification
				logistic_reg

			dnn_classifier

			boosted_tree_classifier
		

		
				Input feature is unstructured
				Image classification

			Text classification

			Sentiment analysis

			Entity extraction
				Use output of Cloud Vision API or Cloud Natural Language API as input to any of the standard BigQuery models above
		

		
				Label is unstructured
				Question answering

			Text summarization

			Image captioning
				Use Cloud AutoML products
		

	

Building a Regression Model

As an example of building a regression model, let’s use the london_bicycles dataset. Let’s assume that we have two types of bicycles: hardy commuter bikes, and fast but fragile road bikes. If a bicycle rental is likely to be for a long duration, we need to have road bikes in stock, but if the rental is likely to be for a short duration, we need to have commuter bikes in stock. Therefore, to build a system to properly stock bicycles, we need to predict the duration of bicycle rentals.

Choose the Label

The first step of solving a machine learning problem is to formulate it—to identify features of our model and the label. Because the goal of our first model is to predict the duration of a rental based on our historical dataset of cycle rentals, the label is the duration of the rental.

However, is this the correct objective for the problem? Should we be predicting the duration of each rental, or should we be predicting the total duration of all rentals at a station over, for instance, an hour? If the latter is the better formulation, the label should be the sum of all the rentals in a specific hour. Talking to our business, though, we learn that a station with 1,000 rentals of 20 minutes each should get commuter bikes, whereas a station that has 100 rentals of 200 minutes each should get road bikes. So predicting the total duration will not help the business make the right decision; predicting the duration of each rental will help them.

Another option is to predict the likelihood of rentals that last less than 30 minutes. In that case, the label is True/False depending on whether the duration was long (more than 30 minutes) or short (less than 30 minutes). This might help the business even more because the probability might indicate the relative proportion of commuter bikes to road bikes to have on hand at each station.

It is quite common to have to make a choice between multiple objectives. In some cases, we could create a weighted combination of these objectives as the label and train a single model. In other cases, you might find it helpful to train multiple models, one for each objective, and use different models in different scenarios. In yet other situations, the best approach might be to present to the end user the results of all the models and have the end user choose. It all depends on your business case.

In this use case, let’s decide that we need to build two models: one in which we predict the duration of a rental, and the other in which we predict the probability that the rental will be longer than 30 minutes. Then we have the end user make their decision based on the two predictions.

Exploring the Dataset to Find Features

If we believe that the duration will vary based on the station at which the bicycle is being rented, the day of the week, and the time of day, those could be our input features. Before we go ahead and create a model with these three features, though, it’s a good idea to verify that these factors do influence the label.

Coming up with features for a machine learning model is called feature engineering. Feature engineering is often the most important part of building accurate machine learning models, and it can be much more impactful than deciding which algorithm to use or tuning hyperparameters. Good feature engineering requires deep understanding of the data and the domain. It is often a process of hypothesis testing; you have an idea for a feature, you check to see whether it works (has mutual information with the label), and then you add it to the model. If it doesn’t work, you try the next idea.

Impact of station

To check whether the duration of a rental varies by station, you can visualize the result of the following query in Data Studio using the start_station_name as the dimension and duration as the metric:3

SELECT
 start_station_name
 , AVG(duration) AS duration
 FROM `bigquery-public-data`.london_bicycles.cycle_hire
 GROUP BY start_station_name

This yields the result shown in Figure 9-2.

[image: It appears that there are a few stations that are associated with long-duration rentals.]
Figure 9-2. It appears that there are a few stations that are associated with long-duration rentals

From Figure 9-2, it is clear that a handful of stations are associated with long-duration rentals (over 3,000 seconds), but that the majority of stations have durations that lie in a relatively narrow range. Had all the stations in London been associated with durations within a narrow range, the station at which the rental commenced would not have been a good feature. But in this problem, as the graph in Figure 9-2 demonstrates, the start_station_name does matter.

Note that you cannot use end_station_name as a feature because at the time the bicycle is being rented, you won’t know to which station the bicycle is going to be returned. Because we are creating a machine learning model to predict events in the future, you need to be mindful of not using any columns that will not be known at the time the prediction is made. This time/causality criterion imposes constraints on what features you can use.

Day of week

For the next candidate features, the process is similar. You can check whether dayofweek (or, similarly, hourofday) matters:

SELECT
 EXTRACT(dayofweek FROM start_date) AS dayofweek
 , AVG(duration) AS duration
FROM `bigquery-public-data`.london_bicycles.cycle_hire
GROUP BY dayofweek

Figure 9-3 shows the visualized result.

[image: Longer duration rentals tend to happen on weekends and in the morning and early afternoon.]
Figure 9-3. Longer duration rentals tend to happen on weekends and in the morning and early afternoon

From Figure 9-3, it is clear that the duration varies depending both on the day of the week and on the hour of the day. It appears that durations are longer on weekends (days 1 and 7) than on weekdays. Similarly, durations are longer early in the morning and in the midafternoon. Hence, both dayofweek and hourofday are good features.

Number of bicycles

Another potential feature is the number of bikes in the station. Perhaps, we hypothesize, people keep bicycles longer if there are fewer bicycles on rent at the station from which they rented. You can verify whether this is the case by using the following:

SELECT
 bikes_count
 , AVG(duration) AS duration
FROM `bigquery-public-data`.london_bicycles.cycle_hire
JOIN `bigquery-public-data`.london_bicycles.cycle_stations
ON cycle_hire.start_station_name = cycle_stations.name
GROUP BY bikes_count

Figure 9-4 presents the result via Data Studio.

[image: Relationship between average duration of bicycle rides and the number of bicycles at the station the bicycle was rented from.]
Figure 9-4. Relationship between average duration of bicycle rides and the number of bicycles at the station the bicycle was rented from

In Figure 9-4, notice that the relationship is noisy with no visible trend (compared against hour-of-day, for example). This indicates that the number of bicycles is not a good feature. You can confirm this quantitatively by computing the Pearson correlation coefficient:

SELECT
 CORR(bikes_count, duration) AS corr
FROM `bigquery-public-data`.london_bicycles.cycle_hire
JOIN `bigquery-public-data`.london_bicycles.cycle_stations
ON cycle_hire.start_station_name = cycle_stations.name

The result, –0.0039, indicates that the bikes_count and duration are essentially independent, because the Pearson coefficient will have an absolute value of 1.0 if they are linearly dependent, and 0.0 if they are linearly independent.

The Pearson correlation coefficient isn’t a perfect test for whether a feature is useful because it looks only at linear dependence. Sometimes, a feature might have a nonlinear dependence with the label. Still, the Pearson coefficient is a good starting point. Machine learning scientists often use more sophisticated statistical tests like mutual information, which computes the randomness of the feature with respect to the label.

Creating a Training Dataset

Based on the exploration of the london_bicycles dataset and the relationship of various columns to the label column, we can prepare the training dataset by pulling out the selected features and the label:

SELECT
 duration
 , start_station_name
 , CAST(EXTRACT(dayofweek FROM start_date) AS STRING) as dayofweek
 , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire

Feature columns have to be either numeric (INT64, FLOAT64, etc.) or categorical (STRING). If the feature is numeric but needs to be treated as categorical, we need to cast it as a STRING—this explains why we cast the dayofweek and hourofday columns, which are integers (in the ranges 1 to 7 and 0 to 23, respectively), into strings.4

Tip

If preparing the data involves computationally expensive transformations or joins, it might be a good idea to save the prepared training data as a table so as to not repeat that work during experimentation. If the transformations are trivial but the query itself is long-winded, it might be convenient to avoid repetitiveness by saving it as a view.

In this case, the query is simple and short, and so (for clarity) we’ll simply repeat the query in later sections.

Training and Evaluating the Model

To train the machine learning model and save it into the dataset ch09eu,5 we need to call CREATE MODEL, which works similarly to CREATE TABLE:

CREATE OR REPLACE MODEL ch09eu.bicycle_model
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS

SELECT
 duration
 , start_station_name
 , CAST(EXTRACT(dayofweek FROM start_date) AS STRING) as dayofweek
 , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that the label column and model type are specified in OPTIONS. Because the label is numeric, this is a regression problem. This is why we picked linear_reg as the model type (we discuss other supported model types later in the chapter). As discussed in the previous section, the SELECT statement above prepares the training dataset and pulls in the label and feature columns.

Evaluating the model

This query took 2.5 minutes and was trained in just one iteration,6 something we can learn by looking at the “Training” tab in the BigQuery section of the GCP Cloud Console. The mean absolute error (available from the evaluation tab) is 1,026 seconds, or about 17 minutes.7 This means that you should expect to be able to predict the duration of bicycle rentals with an average error of about 17 minutes.

In addition to looking at the evaluation tab, you can obtain the evaluation results by running the following SQL query:

SELECT * FROM ML.EVALUATE(MODEL ch09eu.bicycle_model)

Note that the query OPTIONS also identifies the model type. Here, we have picked the simplest regression model that BigQuery supports. We strongly encourage you to pick the simplest model and to spend a lot of time considering and bringing in alternate data choices, because the payoff of a new/improved input feature greatly outweighs the payoff of a better model. Only when you have reached the limits of your data experimentation should you try more complex models.

Combining days of the week

There are other ways that you could have chosen to represent the features that you have. For example, recall that when we explored the relationship between dayofweek and the duration of rentals, we found that durations were longer on weekends than on weekdays. Therefore, instead of treating the raw value of dayofweek as a feature, you can employ this insight by fusing several dayofweek values into the weekday category:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_weekday
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS

SELECT
 duration
 , start_station_name
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
 'weekday', 'weekend') as dayofweek
 , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire

This model results in a mean absolute error of 967 seconds, which is less than the 1,026 seconds for the original model. So let’s go with the weekend-weekday model instead.

Bucketizing the hour of day

Again, based on the relationship between hourofday and the duration, you can experiment with bucketizing the variable into four bins—(–inf,5), [5,10),8 [10,17), and [17,inf):

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS

SELECT
 duration
 , start_station_name
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday', 'weekend')
 as dayofweek
 , ML.BUCKETIZE(EXTRACT(hour FROM start_date), [5, 10, 17]) AS hourofday
FROM `bigquery-public-data`.london_bicycles.cycle_hire

ML.BUCKETIZE is an example of a preprocessing function supported by BigQuery—we are passing in the number to bucketize and the bounds of the bins with –infinity and +infinity being assumed to be on either extremity. This model results in a mean absolute error of 901 seconds, which is less than the 967 seconds for the weekday-weekend model. So let’s choose the bucketized model.

Predicting with the Model

We can try out the prediction by passing in a set of rows for which to predict. For example, you can obtain the predicted duration of a rental in Hyde Park at 5 p.m. on a Tuesday by using this code:

-- INCORRECT! (see next section)
SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,
 (SELECT 'Park Lane , Hyde Park' AS start_station_name

 , 'weekday' AS dayofweek, '17' AS hourofday)
)

This returns a predicted duration of 2,225 seconds, but this is wrong. Do you see the problem?

The need for TRANSFORM

In the previous prediction query, we had to pass in 'weekday' rather than '3' for dayofweek because the model was trained with dayofweek being either weekday or weekend. It is incorrect to pass in the raw data value of '17' for hourofday—we should be passing in the name of the bin that represents 5 p.m. The prediction code will need to carry out the same transformations on the raw data that the training code did in order to get these values correct.

Wouldn’t it be nice if BigQuery could remember the sets of transformations you did at the time of training and automatically apply them at the time of prediction? It can—that’s precisely what the TRANSFORM clause does!

You can even move the extraction of hour-of-day and day-of-week into the TRANSFORM clause so that the client code needs to give us only the timestamp at which the bicycle is being rented:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
'weekday', 'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS

SELECT
 duration
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

Use the TRANSFORM clause and formulate the machine learning problem in such a way that anyone requiring prediction needs to provide just the raw data.9

If a TRANSFORM clause is specified, the model is trained on the output of the TRANSFORM clause. So here, the TRANSFORM clause passes on all of the features and labels from the original SELECT query, except for the start_date, and then adds a couple of features (dayofweek and hourofday) extracted from the start_date.

The resulting model requires just the start_station_name and start_date to predict the duration. The transformations are saved and carried out on the provided raw data to create input features for the model.

Tip

The advantage of placing all preprocessing functions inside the TRANSFORM clause is that clients of the model do not need to know what kind of preprocessing has been carried out—BigQuery takes care of automatically applying the necessary transformations to the raw data during prediction. Best practice, therefore, is to have the SELECT statement in a training query return just the raw data, and have all transformations done in the TRANSFORM clause.

With the TRANSFORM clause in place, the prediction query becomes:

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,
 (SELECT 'Park Lane , Hyde Park' AS start_station_name
 , CURRENT_TIMESTAMP() AS start_date)
)

The result (yours will vary because presumably the timeofday and dayofweek are different) is something like the following:

	
		
				Row
				predicted_duration
				start_station_name
				start_date
				
		

	
	
		
				1
				3498.804224263982
				Park Lane, Hyde Park
				2019-05-19 04:24:03.376064 UTC
				
		

	

Generating batch predictions

You could also create a table of predictions for every hour at every station, starting at 3 a.m. the next day, using array generation:

DECLARE tomorrow_3am TIMESTAMP;
SET tomorrow_3am = TIMESTAMP_ADD(
 TIMESTAMP(DATE_ADD(CURRENT_DATE(), INTERVAL 1 DAY)),
 INTERVAL 3 HOUR);

WITH generated AS (
 SELECT
 name AS start_station_name
 , GENERATE_TIMESTAMP_ARRAY(
 tomorrow_3am,
 TIMESTAMP_ADD(tomorrow_3am, INTERVAL 24 HOUR),
 INTERVAL 1 HOUR) AS dates
 FROM
 `bigquery-public-data`.london_bicycles.cycle_stations
),

features AS (
 SELECT
 start_station_name
 , start_date
 FROM
 generated
 , UNNEST(dates) AS start_date
)

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,
 (SELECT * FROM features)
)

This returns nearly 20,000 predictions, some of which include the following:

	
			
				6
				2707.621807505363
				Palace Gate, Kensington Gardens
				2019-05-19 15:00:00 UTC
		

		
				7
				2707.621807505363
				Palace Gate, Kensington Gardens
				2019-05-19 16:00:00 UTC
		

		
				8
				2571.887817969073
				Palace Gate, Kensington Gardens
				2019-05-19 17:00:00 UTC
		

		
				9
				2571.887817969073
				Palace Gate, Kensington Gardens
				2019-05-19 18:00:00 UTC
		

	

The entire process of machine learning, from creating the training dataset to training and prediction, has thus been carried out without the need to move the data out of BigQuery.

Examining Model Weights

A linear regression model predicts the output as a weighted sum of its inputs. You can examine (or export) these weights by using this command:

 SELECT * FROM ML.WEIGHTS(MODEL ch09eu.bicycle_model_bucketized)

Numeric features receive a single weight, whereas categorical features receive a weight for each possible value. For example, the dayofweek feature has the following weights:

	
		
				Row
				processed_input
				weight
				category_weights.category
				category_weights.weight
		

	
	
		
				2
				dayofweek
				null
				weekday
				1709.4363890323655
		

		
				
				
				
				weekend
				2084.400311228229
		

	

This means that if the day is a weekday, the contribution of this feature to the overall predicted duration is 1,709 seconds (the weights that provide the optimal performance are not unique, so you might get a different value). The weights of different input features are not very meaningful—pretty much the only reason you might need to examine the weights in this manner is if you want to carry out predictions outside of BigQuery.

Tip

Do not use the magnitude or sign of the weights as a handy way to explain what the model is doing. Unless the input features are linearly independent (in real-world datasets, this is not very likely), the magnitudes and signs of the weights are not meaningful. For model explainability, consider using the What-If Tool or a model explainability package like LIME.

Because a linear model is so simple (it’s a weighted average of the inputs), it is possible to extract the model weights and write out the math to compute the prediction in, for example, a Python application:

def compute_regression(rowdict,
 numeric_weights, scaling_df, categorical_weights):
 input_values = rowdict
 # numeric inputs
 pred = 0
 for column_name in numeric_weights['input'].unique():
 wt = numeric_weights[numeric_weights['input'] == column_name
]['input_weight'].values[0]
 if column_name != '__INTERCEPT__':
 meanv = (scaling_df[scaling_df['input'] ==
 column_name]['mean'].values[0])
 stddev = (scaling_df[scaling_df['input'] ==
 column_name]['stddev'].values[0])
 scaled_value = (input_values[column_name] - meanv)/stddev
 else:
 scaled_value = 1.0
 contrib = wt * scaled_value
 pred = pred + contrib
 # categorical inputs
 for column_name in categorical_weights['input'].unique():
 category_weights = categorical_weights[categorical_weights['input'] ==
column_name]
 wt = category_weights[category_weights['category_name'] ==
input_values[column_name]]['category_weight'].values[0]
 pred = pred + wt
 return pred

In this code, the numeric_weights are obtained from the query:

SELECT
 processed_input AS input,
 model.weight AS input_weight
FROM
 ml.WEIGHTS(MODEL dataset.model) AS model

The scaling DataFrame, scaling_df, is obtained from the query:

SELECT
 input, min, max, mean, stddev
FROM
 ml.FEATURE_INFO(MODEL dataset.model) AS model

The categorical_weights are obtained from the query:

SELECT
 processed_input AS input,
 model.weight AS input_weight,
 category.category AS category_name,
 category.weight AS category_weight
FROM
 ml.WEIGHTS(MODEL dataset.model) AS model,
 UNNEST(category_weights) AS category

If you are doing logistic_reg, the output prediction is the result of a sigmoid function applied to the weighted average. Therefore, the output prediction can be obtained as follows:

def compute_classifier(rowdict,
 numeric_weights, scaling_df, categorical_weights):
 pred=compute_regression(rowdict, numeric_weights, scaling_df,
categorical_weights)
 return (1.0/(1 + np.exp(-pred)) if (-500 < pred) else 0)

More-Complex Regression Models

A linear regression model is the simplest form of regression model—each input feature is assigned a weight, and the output is the sum of the weighted inputs plus a constant called the intercept. BigQuery supports dnn_regressor and xgboost models as well.

Deep Neural Networks

A Deep Neural Network (DNN) can be thought of as an extension of linear models in which each node in the first layer consists of a weighted sum of the input features transformed through a (typically nonlinear) function. The second layer consists of nodes, each of which is a weighted sum of the outputs of the first layer transformed through a nonlinear function, and so on, as demonstrated in Figure 9-5.

[image: A Deep Neural Network consists of layers of “nodes.” This example shows two layers between the inputs and outputs and each layer with three nodes, but we can have an arbitrary number of layers and an arbitrary number of nodes in each layer.]
Figure 9-5. A Deep Neural Network consists of layers of “nodes.” This example shows two layers between the inputs and outputs and each layer with three nodes, but we can have an arbitrary number of layers and an arbitrary number of nodes in each layer.

To train a DNN model with 64 nodes in the first layer and 32 nodes in the second layer, you would do the following:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_dnn
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'],
 model_type='dnn_regressor',
 hidden_units=[64, 32])
AS

SELECT
 duration
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

This model took about 20 minutes to train. It ended with a mean absolute error of 1,016 seconds. This is, of course, worse than the 901 seconds that we achieved with the linear model. Sadly, this is par for the course—DNNs are notoriously finicky to train.

Tip

We strongly recommend that you begin with linear models, and only after you have finalized the set of features and transformations should you move on to experiment with more complex models. This is because with the dnn_regressor you will probably need to experiment with different numbers of layers and nodes (i.e., with hidden_units) and regularization settings (i.e., with l2_reg) to obtain good performance. Considering how finicky deep learning networks can be to train, varying feature representations at the same time is a surefire recipe for confusion.

One way to handle this finickiness is to perform hyperparameter tuning to search for optimal network parameters—this is supported by a full-fledged machine learning framework like Cloud AI Platform (CAIP).10 You might be better off doing this training there, or using AutoML (we explore both of these options later in this chapter), but for now let’s try using a smaller network:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_dnn
 TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'],
 model_type='dnn_regressor',
 hidden_units=[10, 5])
AS

SELECT
 duration
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

This yields better performance (981 seconds) but is still not as good as the linear model. More hyperparameter tuning is needed to get a DNN model that does better than the linear model we started out with. Also, in general a DNN provides superior performance only if there are many continuous features.

Gradient-boosted trees

Decision trees are a popular technique in machine learning because of their ready interpretability (they are essentially just combinations of if-then rules). However, decision trees tend to have poor accuracy because the range of functions they can approximate is limited and can be prone to overfitting. One way of improving the performance of decision trees (at the expense of explainability11) is to train an ensemble of decision trees, each of which is a poor predictor but when averaged together yield good performance. Boosting is a technique that is used to select trees in the ensemble, and XGBoost12 is a scalable, distributed way to build boosted decision trees on extremely large and sparse datasets. XGBoost used to be considered the state-of-the-art machine learning technique until the advent of deep learning networks circa 2015. It continues to be popular on structured data problems.

You can train an XGBoost machine learning model in BigQuery by selecting the boosted_tree_regressor model type:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_xgboost
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
 'weekday', 'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['duration'],
 model_type='boosted_tree_regressor',
 max_tree_depth=4)
AS

SELECT
 duration
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

The resulting model on this problem has poorer performance (1,363 seconds) than the linear model. The importance of the input features can be obtained by using this command:

SELECT * FROM ML.FEATURE_INFO(MODEL ch09eu.bicycle_model_xgboost)

Human insights and auxiliary data

Besides trying different model architectures and tuning the parameters of these models, we might consider adding new input features that incorporate human insights or provide auxiliary data to the machine learning model.

For example, in the previous model, we used ML.BUCKETIZE to split a continuous variable (the hour extracted from the timestamp) into four bins. Another extremely useful function is ML.FEATURE_CROSS, which can combine separate categorical features into an AND condition (this sort of relationship between features can be difficult for a machine learning model to learn). In our problem, intuition dictates that the combination of weekday and morning is a good predictor of bicycle rental duration, much more so than either weekday by itself or morning by itself. If so, it might be worthwhile to create a feature cross of the two features instead of treating the day and time separately:

ML.FEATURE_CROSS(STRUCT(
 IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
 'weekday', 'weekend') as dayofweek,
 ML.BUCKETIZE(EXTRACT(HOUR FROM start_date),
 [5, 10, 17]) AS hr
)) AS dayhr

In our models so far, we used start_station_name as an input to the model. This treats the stations as independent. In Chapter 8, we discussed the benefits of ST_GeoHash as a way to capture spatial proximity. Let’s, therefore, bring in the auxiliary information about the stations’ locations and use that as an additional input to the model.

Combining these two ideas, we now have the model training query:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_fc_geo
 TRANSFORM(duration
 , ML.FEATURE_CROSS(STRUCT(
 IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
 'weekday', 'weekend') as dayofweek,
 ML.BUCKETIZE(EXTRACT(HOUR FROM start_date),
 [5, 10, 17]) AS hr
)) AS dayhr
 , ST_GeoHash(ST_GeogPoint(latitude, longitude), 4) AS start_station_loc4
 , ST_GeoHash(ST_GeogPoint(latitude, longitude), 6) AS start_station_loc6
 , ST_GeoHash(ST_GeogPoint(latitude, longitude), 8) AS start_station_loc8
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg')
AS

SELECT
 duration
 , latitude
 , longitude
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire
JOIN `bigquery-public-data`.london_bicycles.cycle_stations
ON cycle_hire.start_station_id = cycle_stations.id

This model results in a mean absolute error of 898 seconds, an improvement over the 901 seconds we saw earlier. However, the improvement is relatively minor. Because of these diminishing returns, it might be time to move on.

Building a Classification Model

In the previous section, we built machine learning models to predict the duration of a bicycle rental. However, over the span of one hour, many bicycles will be rented, and they will be rented for different durations. For example, take the distribution of bicycles that were rented at Royal Avenue 1, Chelsea, on weekdays in the hour starting at 14:00 (2:00 p.m.):

SELECT
 APPROX_QUANTILES(duration, 10) AS q
FROM `bigquery-public-data`.london_bicycles.cycle_hire
WHERE
 EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6
 AND EXTRACT(hour FROM start_date) = 14
 AND start_station_name = 'Royal Avenue 1, Chelsea'

Here’s the result:

	
		
				Row
				q
		

	
	
		
				1
				0
		

		
				
				240
		

		
				
				420
		

		
				
				540
		

		
				
				660
		

		
				
				840
		

		
				
				1020
		

		
				
				1260
		

		
				
				1500
		

		
				
				2040
		

		
				
				386460
		

	

80% of weekday rentals at this station lasted less than 1,500 seconds. Had this been the only prediction for you to go by, you would have stocked only commuter bikes at this station on those days. However, had you known that somewhere between 10% and 20% of bicycle rentals last longer than 1,800 seconds, you might have decided to stock this station so that 15% of the bicycles are road bikes. A classification model will allow us to predict the probability that a rental will last longer than 1,800 seconds.

Training

For simplicity, let’s take the set of features we used in the regression model and train a model to predict the probability that the rental will be for longer than 30 minutes:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_longrental
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
 'weekday', 'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
)
OPTIONS(input_label_cols=['biketype'], model_type='logistic_reg')
AS

SELECT
 IF(duration > 1800, 'roadbike', 'commuter') AS biketype
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that the model_type now is logistic regression (logistic_reg)—this is the simplest model type for classification problems. For classification with DNNs or boosted-regression trees, use dnn_classifier or boosted_tree_classifier, respectively.

We created the label by thresholding rentals at 1,800 seconds and gave the two categories the names roadbike and commuter (this is similar to how we created a categorical variable weekend/weekday from the numeric variable dayofweek). We could also have used a Boolean value (True/False), but using the actual category name is clearer.

At the end of training, you can see that the error has decreased over seven iterations through the dataset and has now converged, as depicted in Figure 9-6 (because of random seeds, your results might be somewhat different).

There are actually two loss curves in Figure 9-6: one on the training data and the other on the evaluation data (BigQuery automatically split the data for us). Here, the curves are quite similar. If the evaluation curve were much higher than the loss curve, you’d have been worried about overfitting. Switching to the table view, you can verify that the two losses were, indeed, quite similar throughout the training:

	
		
				Iteration
				Training Data Loss
				Evaluation Data Loss
				Learn Rate
				Duration (seconds)
		

	
	
		
				6
				0.3072
				0.3024
				3.2000
				41.59
		

		
				5
				0.3078
				0.3029
				6.4000
				39.66
		

		
				4
				0.3119
				0.3069
				3.2000
				40.54
		

		
				3
				0.3240
				0.3195
				1.6000
				42.15
		

		
				2
				0.3576
				0.3543
				0.8000
				37.96
		

		
				1
				0.4502
				0.4483
				0.4000
				38.01
		

		
				0
				0.5812
				0.5805
				0.2000
				22.10
		

	

[image: The loss curve during model training has converged.]
Figure 9-6. The loss curve during model training has converged

Evaluation

The loss measure used in classification is cross-entropy, so that’s what the training curves depicted. You can look at more familiar evaluation metrics such as accuracy in the evaluation tab of the BigQuery web user interface (UI), as shown in Figure 9-7.

[image: The evaluation tab in the BigQuery web UI for a classification model.]
Figure 9-7. The evaluation tab in the BigQuery web UI for a classification model

Prediction

The prediction is similar to the regression case, except that you now get the probability of each class:

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_longrental,
 (SELECT 'Park Lane , Hyde Park' AS start_station_name
 , TIMESTAMP('2019-05-09 16:16:00 UTC') AS start_date)
)

This yields the following:

	
		
				Row
				predicted_biketype
				predicted_biketype​_probs.label
				predicted_biketype​_probs.prob
				start_station_name
				start_date
		

	
	
		
				1
				commuter
				roadbike
				0.4419...
				Park Lane, Hyde Park
				2019-05-10 16:16:00 UTC
		

		
				
				
				commuter
				0.5580...
				
				
		

	

Thus, the probability that a rental at 4 p.m. on a weekday from Hyde Park will require a road bike is 0.44, or 44%. Ideally, then, you should have 44% of your bicycles at that station at that time be road bikes.

Choosing the Threshold

In our use case, the actual probability is what is of interest. Often, though, in classification problems, the desired output is the predicted class, not just the probability. Thus, the predicted output (see previous section) includes not only the probability but also the class with the highest probability. In a binary classification problem, this is the same as thresholding the probability at 0.5 and choosing the “positive” class if the probability is more than 0.5.

Recall is the percentage of actual true values (true positives / total positives) at a particular threshold point. If the recall is high, you’ll get almost all of the things you’re looking for. However, setting a threshold point with a high recall can be dangerous, because you might get a lot of false positives as well. If the threshold is 0, everything is chosen, so you get a perfect recall.

The other important metric is precision, which is the percentage of true positives over the whole dataset. In other words, it is a way of saying, “Given I’ve predicted this to be true, what is the probability that I’m right?” If you set the threshold to 0, you get the proportion of true data in the dataset. (In other words, you predict everything to be true, so if 10% of the values are true, your precision will be 10%. This isn’t a very good classifier.)

The aggregate metrics in the evaluation tab (e.g., accuracy=0.89) are calculated based on the 0.5 threshold.

If you wanted to ensure that you have a road bike in stock 50% of the times that one is required, you would want to have a recall of 0.5 because you’d need to capture half of the long rides. You can use the slider in the evaluation tab to change the threshold to 0.144, as shown in Figure 9-8, so that you obtain the desired recall metric. Note that this comes at the expense of precision; at this threshold, the model will give you a precision of 0.26—only 26% of the trips that we predict will require road bikes will actually be longer than 30 minutes.13

[image: Change the probability threshold to obtain a desired recall or precision.]
Figure 9-8. Change the probability threshold to obtain a desired recall or precision

For binary classification models, the desired threshold can be passed to ML.PREDICT:

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_longrental,
 (SELECT 'Park Lane , Hyde Park' AS start_station_name
 , TIMESTAMP('2019-05-09 16:16:00 UTC') AS start_date),
 STRUCT(0.144 AS threshold)
)

Here is the result:

	
		
				Row
				predicted_biketype
				predicted_biketype_​probs.label
				predicted_biketype_​probs.prob
				start_station_name
				start_date
		

	
	
		
				1
				roadbike
				roadbike
				0.4419...
				Park Lane, Hyde Park
				2019-05-09 16:16:00 UTC
		

	

Note that the predicted_biketype now is roadbike, even though the probability corresponding to roadbike is less than the default threshold of 0.5.

Customizing BigQuery ML

By default, BigQuery ML makes reasonable choices for learning rate,14 scaling input features,15 splitting the data,16 and so on. The OPTIONS setting when creating a model provides a number of fine-grained ways to control the model creation. In this section, we discuss a few of them.

Controlling Data Split

By default on moderately sized datasets, BigQuery randomly selects 20% of the data and keeps it aside for evaluation. The training is carried out on only 80% of the data we provide. For tiny datasets (those under 500 rows), all of the data is used for training, and for large datasets (those over 50,000 rows), only 10,000 rows are used for evaluation. We can control what data is used for evaluation by means of three parameters: data_split_method, data_split_eval_fraction, and data_split_col, as listed in Table 9-2.

	Table 9-2. Controlling how data is split between training and evaluation
	
		
				Scenario
				data_split_method
				data_split_eval_fraction
				data_split_col
		

	
	
		
				Default
				auto_split
				0.2
				n/a
		

		
				Train on all the data
				no_split
				n/a
				n/a
		

		
				Keep aside a randomly selected 10% of data for evaluation
				random
				0.1
				n/a
		

		
				Specifically identify which rows are for evaluation
				custom
				n/a
				colname

			Rows with Boolean value of True/NULL for this column are kept aside for evaluation.
		

		
				Keep last 10% of rows for evaluation
				seq
				0.1

			(default is 0.2)
				colname

			Rows are ordered ASC on this column.
		

	

A better measure of how well the model will perform after it’s deployed is to train it on the first 80% (ordered by time) of bicycle rentals in the dataset and then test it on the remaining 20%.17 That is, rather than splitting randomly, you’d train on the older trips and test on the newer ones:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized_seq
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
 , start_date—used to split the data
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg',
 data_split_method='seq',
 data_split_eval_fraction=0.2,
 data_split_col='start_date')
AS

SELECT
 duration
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that the SELECT and TRANSFORM clauses both emit the column used to split the data, and that OPTIONS includes the three parameters that control how the data is split.

The mean absolute error now is 860 seconds, but we cannot compare this number with the results obtained with the random split—evaluation metrics depend quite heavily on what data is used for evaluation, and because we are using a different evaluation dataset now, we cannot compare these results to the ones obtained earlier. Also, our earlier results were contaminated by leakage—for example, of Christmas days.

Balancing Classes

In our classification problem, less than 12% of rentals last longer than 1,800 seconds. This is an example of an unbalanced dataset. It can be helpful to weight the rarer class higher, and we can do that either by passing in an explicit array of class weights or by asking BigQuery to set the weights of classes based on inverse frequency.

Here’s an example of using this autobalancing method:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_longrental_balanced
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',
'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
 , start_date
)
OPTIONS(input_label_cols=['biketype'], model_type='logistic_reg',
 data_split_method='seq',
 data_split_eval_fraction=0.2,
 data_split_col='start_date',
 auto_class_weights=True)

AS

SELECT
 IF(duration > 1800, 'roadbike', 'commuter') AS biketype
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that after you balance the weights, the probability that comes from the model is no longer an estimate of the actual predicted occurrence frequency. This is because the probability estimate that comes out of logistic regression is based on the frequency of occurrence in the data seen by the model, and we have artificially boosted the occurrence of rare events.

Regularization

Recall that in our data exploration, we discovered that except for a handful of stations which had unusually long durations, most of the stations had nearly identical durations, and many of these stations had very few rentals. Categorical features with such long-tailed distributions can cause overfitting. Overfitting is when the model learns noise (arbitrary variation) in the data, not the signal. In other words, the model can become so elaborate that it represents the dataset itself, not the underlying qualities of the dataset.

Regularization avoids overfitting because it penalizes complexity, in part by assigning penalties to large weight values. Large weight values are often a sign of overfitting because they can turn on suddenly when exactly one datapoint is encountered.

BigQuery ML supports two types of regularization: L1 and L2. L1 regularization tries to push individual weights to zero and is better for interpretability, whereas L2 tries to keep all the weights relatively similar and does better at controlling overfitting.18 You can control the amount of L1 or L2 regularization when creating the model:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized_seq_l2
TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
 'weekday', 'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday
 , start_date—used to split the data
)
OPTIONS(input_label_cols=['duration'], model_type='linear_reg',
 data_split_method='seq',
 data_split_eval_fraction=0.2,
 data_split_col='start_date',
 l2_reg=0.1)
AS

SELECT
 duration
 , start_station_name
 , start_date
FROM `bigquery-public-data`.london_bicycles.cycle_hire

In this case, though, the resulting mean absolute error is 857 seconds, nearly identical to what was obtained without L2 regularization; this is most likely because we have a large-enough dataset and a model with few enough parameters to tune that overfitting was not happening. L2 regularization is generally considered a best practice, particularly if you don’t have a large amount of data or if you are using a more sophisticated model (such as a DNN) with many more parameters.

k-Means Clustering

The machine learning algorithms that we have considered so far have been supervised learning methods—we needed to provide BigQuery a label column. BigQuery also supports unsupervised learning  in that you can apply the k-means algorithm to group your data into clusters based on similarity. The algorithm is called k-means because it identifies k clusters, each of which is described in terms of the mean of the members of the cluster. Unlike supervised machine learning, which helps you predict the value of the label column when given values for the futures, unsupervised learning is descriptive. Use model_type=kmeans in BigQuery to understand your data in terms of centroids of the k clusters that have been determined from the data, and to make decisions about the members of each cluster based on the attributes of its centroid.

What’s Being Clustered?

The first step in using k-means clustering is to determine what is being clustered and why you are doing it. Because tables in BigQuery tend to be flattened and describe multiple aspects, it helps to be clear about what each member of the cluster represents.

Suppose that you have data in which each row represents a retail customer transaction. There are several ways in which you could do the clustering on this table, and which one you choose depends on what you want to do with the clusters:

		
	You could find natural groups among your customers. This is called customer segmentation. Data we use to perform the customer segmentation would be attributes that describe the customer making the transaction—these might include things like which store they visited, what items they bought, how much they paid, and so on. The reason to cluster these customers is that you want to understand what these groups of customers are like (these are called personas) so that you can design items that appeal to members of one of those groups by understanding the “centroid customer” of each cluster.

	

		
	You could find natural groups among the items purchased. These are called product groups. Data we use to perform the product groups would be attributes that describe the item(s) being purchased in the transaction—these might include things like who purchased them, when they were purchased, which store they were purchased at, and so forth. The reason to cluster these items is that you want to understand the characteristics of a product group so that you can learn how to reduce cannibalization or improve cross-selling.

	

In both of these cases, we are using clustering as a heuristic to help make decisions — it’s too difficult to design individualized products or understand product interactions, so you design for groups of customers or groups of items.

Note that for the specific use case of product recommendations (recommending products to customers or targeting customers for a product), it is better to train a matrix_factorization model as described later in this chapter. But for other decisions for which there is no readily available predictive analytics approach, k-means clustering might give you a way to make a data-driven decision.

Clustering Bicycle Stations

Suppose that you often make decisions about bicycle stations—which stations to stock with new types of bicycles, which ones to repair, which ones to expand, and so on, and you want to make these decisions in a data-driven manner. This means that you are going to cluster bicycle stations, and you could group stations that are similar based on attributes such as the duration of rentals from the station, the number of trips per day from the station, the number of bike racks at the station, and the distance of the station from the city center. Because the first two attributes vary based on whether the day in question is a weekday or a weekend, let’s compute two values for those.

Because the query is quite long and cumbersome, let’s also save it into a table:

CREATE OR REPLACE TABLE ch09eu.stationstats AS

WITH hires AS (
 SELECT
 h.start_station_name as station_name,
 IF(EXTRACT(DAYOFWEEK FROM h.start_date) BETWEEN 2 and 6,
 "weekday", "weekend") as isweekday,
 h.duration,
 s.bikes_count,
 ST_DISTANCE(ST_GEOGPOINT(s.longitude, s.latitude),
 ST_GEOGPOINT(-0.1, 51.5))/1000 as distance_from_city_center
 FROM `bigquery-public-data.london_bicycles.cycle_hire` as h
 JOIN `bigquery-public-data.london_bicycles.cycle_stations` as s
 ON h.start_station_id = s.id
 WHERE EXTRACT(YEAR from start_date) = 2015
),

stationstats AS (
 SELECT
 station_name,
 AVG(IF(isweekday = 'weekday', duration, NULL)) AS duration_weekdays,
 AVG(IF(isweekday = 'weekend', duration, NULL)) AS duration_weekends,
 COUNT(IF(isweekday = 'weekday', duration, NULL)) AS numtrips_weekdays,
 COUNT(IF(isweekday = 'weekend', duration, NULL)) AS numtrips_weekends,
 MAX(bikes_count) as bikes_count,
 MAX(distance_from_city_center) as distance_from_city_center
 FROM hires
 GROUP BY station_name
)

SELECT *
from stationstats

The resulting table has 802 rows, one for each station operating in 2015, and looks something like this:

	
		
				Row
				station_name
				duration_​weekdays
				duration_​weekends
				numtrips_​weekdays
				numtrips_​weekends
				bikes_count
				distance_from_​city_center
		

	
	
		
				1
				Borough Road, Elephant & Castle
				1109.932...
				2125.095...
				5749
				1774
				29
				0.126...
		

		
				2
				Webber Street, Southwark
				795.439...
				938.357...
				6517
				1619
				34
				0.164...
		

		
				3
				Great Suffolk Street, The Borough
				802.530...
				1018.310...
				8418
				2024
				18
				0.193...
		

	

Carrying Out Clustering

As with supervised learning, carrying out clustering simply involves a CREATE MODEL statement on the table created in the previous section, but taking care to remove the station_name field because it uniquely identifies each station:

CREATE OR REPLACE MODEL ch09eu.london_station_clusters
OPTIONS(model_type='kmeans',
 num_clusters=4,
 standardize_features = true) AS

SELECT * EXCEPT(station_name)
from ch09eu.stationstats

The model_type is kmeans. If the num_clusters option is omitted, BigQuery will choose a reasonable value based on the number of rows in the table. The other option, standardize_features, is necessary for this dataset because the different columns all have very different ranges. The distance from the city center is on the order of a few kilometers, whereas the number of trips and duration are on the order of thousands. Therefore, it is a good idea to have BigQuery scale these values by making them zero-mean and unit-variance.

Understanding the Clusters

To find which cluster a particular station belongs to, use ML.PREDICT. Here’s a query to find the cluster of every station that has “Kennington” in its name:

SELECT * except(nearest_centroids_distance)
FROM ML.PREDICT(MODEL ch09eu.london_station_clusters,
(SELECT * FROM ch09eu.stationstats
 WHERE REGEXP_CONTAINS(station_name, 'Kennington')))

This yields the following:

	
		
				Row
				CENTROID_​ID
				station_​name
				duration_​weekdays
				duration_​weekends
				numtrips_​weekdays
				numtrips_​weekends
				bikes_​count
				distance_​from_city_​center
		

	
	
		
				1
				2
				Kennington Road, Vauxhall
				1209.433...
				1720.598...
				8135
				2975
				26
				0.891...
		

		
				2
				2
				Kennington Lane Rail Bridge, Vauxhall
				979.391...
				1812.217...
				20263
				5014
				28
				2.175...
		

		
				3
				2
				Cotton Garden Estate, Kennington
				1572.919...
				997.949...
				5313
				1600
				14
				1.117...
		

		
				4
				3
				Kennington Station, Kennington
				1689.587...
				3579.285...
				4875
				1848
				15
				1.298...
		

	

A few of the Kennington stations are in centroid #2, whereas others are in centroid #3.19 To understand these groups, you can examine the centroid attributes:

SELECT *
FROM ML.CENTROIDS(MODEL ch09eu.london_station_clusters)
ORDER BY centroid_id

This returns a table that contains one row for each attribute of the cluster:

	
		
				Row
				centroid_id
				feature
				numerical_value
				categorical_value​.category
				categorical_value​.value
		

	
	
		
				1
				1
				distance_from_city_center
				2.978...
				
				
		

		
				2
				1
				bikes_count
				10.013...
				
				
		

		
				3
				1
				numtrips_weekends
				8273.849...
				
				
		

	

You can pivot the table as follows:

CREATE TEMP FUNCTION cvalue(x ANY TYPE, col STRING) AS (
 (SELECT value from unnest(x) WHERE name = col)
);

WITH T AS (
 SELECT
 centroid_id,
 ARRAY_AGG(STRUCT(feature AS name,
 ROUND(numerical_value,1) AS value)
 ORDER BY centroid_id) AS cluster
 FROM ML.CENTROIDS(MODEL ch09eu.london_station_clusters)
 GROUP BY centroid_id
)
SELECT
 CONCAT('Cluster#', CAST(centroid_id AS STRING)) AS centroid,
 cvalue(cluster, 'duration_weekdays') AS duration_weekdays,
 cvalue(cluster, 'duration_weekends') AS duration_weekends,
 cvalue(cluster, 'numtrips_weekdays') AS numtrips_weekdays,
 cvalue(cluster, 'numtrips_weekends') AS numtrips_weekends,
 cvalue(cluster, 'bikes_count') AS bikes_count,
 cvalue(cluster, 'distance_from_city_center') AS distance_from_city_center
FROM T
ORDER BY centroid_id ASC

The pivot gives you the following result:

	
		
				Row
				centroid
				duration_​weekdays
				duration_​weekends
				numtrips_​weekdays
				numtrips_​weekends
				bikes_count
				distance_from_​city_center
		

	
	
		
				1
				Cluster#1
				1362.6
				1968.4
				25427.3
				8273.8
				10.0
				3.0
		

		
				2
				Cluster#2
				1193.5
				1738.1
				8457.4
				2584.3
				21.0
				3.0
		

		
				3
				Cluster#3
				1675.0
				2460.5
				4702.4
				2136.8
				14.9
				6.7
		

		
				4
				Cluster#4
				1124.0
				1543.1
				8519.0
				2342.1
				5.7
				4.1
		

	

To visualize this table, in the BigQuery web UI, click “Explore in Data Studio” and then select “Table with bars.” Make the centroid column the “dimension” and the remaining columns the metrics. Figure 9-9 shows the result.

[image: Cluster attributes.]
Figure 9-9. Cluster attributes

From Figure 9-9, you can see that Cluster #1 consists of extremely busy stations (see the number of trips) that are close to the city center, Cluster #2 consists of less busy stations close to the city center, Cluster #3 consists of stations that are far away from the city center and seem to be used more on weekends on long trips (these are the only stations with more weekend trips than weekday trips), and Cluster #4 consists of tiny stations (see bikes_count) in the outer core of the city, probably in residential areas. Based on these characteristics and some knowledge of London, we can come up with descriptive names for these clusters. Cluster 1 would probably be “Tourist areas,” Cluster 2 would be “Business district,” Cluster 3 would be “Day trips,” and Cluster 4 would be “Commuter stations.”

Data-Driven Decisions

You can now use these clusters to make different decisions. For example, suppose that you just received funding and can expand the bike racks. In which stations should you install extra capacity? If you didn’t have the clustering data, you might be tempted to go with stations with lots of trips and not enough bikes — stations in Cluster #1. But you have done the clustering and discovered that this group of stations mostly serves tourists. They don’t vote, so let’s put the extra capacity in Cluster #4 (commuter stations).

To take another example, suppose that you need to experiment with a new type of lock. In which cluster of stations should you conduct this experiment? The business district stations seem logical, and sure enough, those are the stations with lots of bikes and that are busy enough to support an A/B test. If, on the other hand, you want to stock some stations with road (racing) bikes, which ones should you select? Cluster #3, comprising stations that serve people who are going on day trips out of the city, seems like a good choice.

Obviously, you could have made these decisions individually by doing custom data analysis each time. But clustering the stations, coming up with descriptive names, and using the names to make decisions is much simpler and more explainable.

Recommender Systems

Collaborative filtering provides a way to generate product recommendations for users, or user targeting for products. The starting point is a table with three columns: a user ID, an item ID, and the rating that the user gave the product. This table can be sparse—users don’t need to rate all products. Based on just the ratings, the technique finds similar users and similar products and determines the rating that a user would give an unseen product. Then we can recommend the products with the highest predicted ratings to users, or target products at users with the highest predicted ratings.

The MovieLens Dataset

To illustrate recommender systems in action, let’s use the MovieLens dataset. This is a dataset of movie reviews released by GroupLens, a research lab in the Department of Computer Science and Engineering at the University of Minnesota, through funding from the US National Science Foundation.

In Cloud Shell, download the data and load it as a BigQuery table using the following:

curl -O 'http://files.grouplens.org/datasets/movielens/ml-20m.zip'
unzip ml-20m.zip
bq --location=EU load --source_format=CSV \
 --autodetect ch09eu.movielens_ratings ml-20m/ratings.csv
bq --location=EU load --source_format=CSV \
 --autodetect ch09eu.movielens_movies_raw ml-20m/movies.csv

The resulting ratings table has the following columns:

	
		
				Row
				userId
				movieId
				rating
				timestamp
				
		

	
	
		
				1
				70141
				6219
				2.0
				1070338674
				
		

		
				2
				70159
				2657
				2.0
				1427155558
				
		

	

Here’s a quick exploratory query:

SELECT
 COUNT(DISTINCT userId) numUsers,
 COUNT(DISTINCT movieId) numMovies,
 COUNT(*) totalRatings
FROM ch09eu.movielens_ratings

This reveals that the dataset consists of more than 138,000 users, nearly 27,000 movies, and a little more than 20 million ratings, confirming that the data has been loaded successfully.

Let’s examine the first few movies using the following query:

SELECT *
FROM ch09eu.movielens_movies_raw
WHERE movieId < 5

We can see that the genres column is a formatted string:

	
		
				Row
				movieId
				title
				genres
		

	
	
		
				1
				3
				Grumpier Old Men (1995)
				Comedy|Romance
		

		
				2
				4
				Waiting to Exhale (1995)
				Comedy|Drama|Romance
		

		
				3
				2
				Jumanji (1995)
				Adventure|Children|Fantasy
		

	

We can parse the genres into an array and rewrite the table as follows:

CREATE OR REPLACE TABLE ch09eu.movielens_movies AS
SELECT
* REPLACE(SPLIT(genres, "|") AS genres)
FROM
ch09eu.movielens_movies_raw

Now the table looks as follows:

	
		
				Row
				movieId
				title
				genres
		

	
	
		
				1
				4
				Waiting to Exhale (1995)
				Comedy
		

		
				
				
				
				Drama
		

		
				
				
				
				Romance
		

		
				2
				3
				Grumpier Old Men (1995)
				Comedy
		

		
				
				
				
				Romance
		

		
				3
				2
				Jumanji (1995)
				Adventure
		

		
				
				
				
				Children
		

		
				
				
				
				Fantasy
		

	

With the MovieLens data now loaded, we are ready to do collaborative filtering.

Matrix Factorization

Matrix factorization is a collaborative filtering technique that relies on factorizing the ratings matrix into two vectors called the user factors and the item factors. The user factors vector is a low-dimensional representation of a user_col, and the item factors vector similarly represents an item_col.

You can create the recommender model using the following:

-- not the final model; see movie_recommender_16
CREATE OR REPLACE MODEL ch09eu.movie_recommender
options(model_type='matrix_factorization',
 user_col='userId', item_col='movieId', rating_col='rating')
AS

SELECT
userId, movieId, rating
FROM ch09eu.movielens_ratings

Note that you create a model as usual, except that the model_type is matrix_factorization and that you need to identify which columns play what roles in the collaborative filtering setup.

The resulting model took an hour to train, and the training data loss starts out extremely bad and is driven down to near-zero over the next four iterations:20

	
		
				Iteration
				Training Data Loss
				Evaluation Data Loss
				Duration (seconds)
				
		

	
	
		
				4
				0.5734
				172.4057
				180.99
				
		

		
				3
				0.5826
				187.2103
				1,040.06
				
		

		
				2
				0.6531
				4,758.2944
				219.46
				
		

		
				1
				1.9776
				6,297.2573
				1,093.76
				
		

		
				0
				63,287,833,220.5795
				168,995,333.0464
				1,091.21
				
		

	

However, the evaluation data loss is quite high—much higher than the training data loss. This indicates that overfitting is happening, and so you need to add some regularization. Let’s do that next:

-- not final model. See movie_recommender_16
CREATE OR REPLACE MODEL ch09eu.movie_recommender_l2
options(model_type='matrix_factorization',
 user_col='userId', item_col='movieId',
 rating_col='rating', l2_reg=0.2)
AS

SELECT
userId, movieId, rating
FROM ch09eu.movielens_ratings

Now you get faster convergence (three iterations instead of five) and a lot less overfitting:

	
		
				Iteration
				Training Data Loss
				Evaluation Data Loss
				Duration (seconds)
				
		

	
	
		
				2
				0.6509
				1.4596
				198.17
				
		

		
				1
				1.9829
				33,814.3017
				1,066.06
				
		

		
				0
				481,434,346,060.7928
				2,156,993,687.7928
				1,024.59
				
		

	

By default, BigQuery sets the number of factors to be the log2 of the number of rows. In this case, because we have 20 million rows in the table, the number of factors would have been chosen to be 24. As with the number of clusters in k-means clustering, this is a reasonable default, but it is often worth experimenting with a number about 50% higher (36) and a number that is about a third lower (16):21

CREATE OR REPLACE MODEL ch09eu.movie_recommender_16
options(model_type='matrix_factorization',
 user_col='userId', item_col='movieId',
 rating_col='rating', l2_reg=0.2, num_factors=16)
AS

SELECT
userId, movieId, rating
FROM ch09eu.movielens_ratings

When we did that, we discovered that the evaluation loss was lower (0.97) with num_factors=16 than with num_factors=36 (1.67) or num_factors=24 (1.45). We could continue experimenting, but we are likely to see diminishing returns with further experimentation. So let’s pick this as the final matrix factorization model and move on.

Making Recommendations

With the trained model, you can now provide recommendations. For example, let’s find the best comedy movies to recommend to the user whose userId is 903:

SELECT * FROM
ML.PREDICT(MODEL ch09eu.movie_recommender_16, (
 SELECT
 movieId, title, 903 AS userId
 FROM ch09eu.movielens_movies, UNNEST(genres) g
 WHERE g = 'Comedy'
))
ORDER BY predicted_rating DESC
LIMIT 5

In this query, we are calling ML.PREDICT, passing in the trained recommendation model and providing a set of movieId and userId on which to carry out the predictions. In this case, it’s just one userId (903), but all movies whose genre includes Comedy. Here is the result:

	
		
				Row
				predicted_rating
				movieId
				title
				userId
		

	
	
		
				1
				4.747231361947591
				107434
				Diplomatic Immunity (2009–)
				903
		

		
				2
				4.372639637398302
				62206
				Supermarket Woman (Sûpâ no onna) (1996)
				903
		

		
				3
				4.325021974040314
				122441
				Tales That Witness Madness (1973)
				903
		

		
				4
				4.296062517241643
				120313
				Otakus in Love (2004)
				903
		

		
				5
				4.277251207896746
				130347
				Bill Hicks: Sane Man (1989)
				903
		

	

Filtering out previously rated movies

Of course, this includes movies the user has already seen and rated in the past. Let’s remove them:

SELECT * FROM
ML.PREDICT(MODEL ch09eu.movie_recommender_16, (
 WITH seen AS (
 SELECT ARRAY_AGG(movieId) AS movies
 FROM ch09eu.movielens_ratings
 WHERE userId = 903
)
 SELECT
 movieId, title, 903 AS userId
 FROM ch09eu.movielens_movies, UNNEST(genres) g, seen
 WHERE g = 'Comedy' AND movieId NOT IN UNNEST(seen.movies)
))
ORDER BY predicted_rating DESC
LIMIT 5

For this user, this happens to yield the same set of movies—the top predicted ratings didn’t include any of the movies the user has already seen.

Customer targeting

In the previous section, we looked at how to identify the top-rated movies for a specific user. Sometimes we have a product and need to find the customers who are likely to appreciate it. Suppose, for example, you want to get more reviews for movieId=96481, which has only one rating, and you want to send coupons to the 100 users who are likely to rate it the highest. We can identify those users by using the following:

SELECT * FROM
ML.PREDICT(MODEL ch09eu.movie_recommender_16, (
 WITH allUsers AS (
 SELECT DISTINCT userId
 FROM ch09eu.movielens_ratings
)
 SELECT
 96481 AS movieId,
 (SELECT title FROM ch09eu.movielens_movies WHERE movieId=96481) title,
 userId
 FROM
 allUsers
))
ORDER BY predicted_rating DESC
LIMIT 100

The result gives us 100 users to target, the top 5 of whom we list here:

	
		
				Row
				predicted_rating
				movieId
				title
				userId
		

	
	
		
				1
				4.8586009640376915
				96481
				American Mullet (2001)
				54192
		

		
				2
				4.670093338552966
				96481
				American Mullet (2001)
				84240
		

		
				3
				4.544395037073204
				96481
				American Mullet (2001)
				109638
		

		
				4
				4.422718574118088
				96481
				American Mullet (2001)
				26606
		

		
				5
				4.410969328468145
				96481
				American Mullet (2001)
				138139
		

	

Batch predictions for all users and movies

What if you want to carry out predictions for every user and movie combination? Instead of having to pull distinct users and movies as in the previous query, a convenient function is provided to carry out batch predictions for all movieId and userId encountered during training:

SELECT *
FROM ML.RECOMMEND(MODEL ch09eu.movie_recommender_16)

As seen in an earlier section, it is possible to filter out movies that the user has already seen and rated in the past. The reason previously viewed movies aren’t filtered out by default is that there are situations (think of restaurant recommendations, for example) for which it is perfectly expected that we would need to recommend restaurants the user has liked in the past.

Incorporating User and Movie Information

The matrix factorization approach does not use any information about users or movies beyond what is available from the ratings matrix. However, we will often have user information (such as the city they live in, their annual income, their annual expenditure, etc.), and we will almost always have more information about the products in our catalog. How do we incorporate this information into our recommendation model?

The answer lies in recognizing that the user factors and product factors that result from the matrix factorization approach end up being a concise representation of the information about users and products available from the ratings matrix. We can concatenate this information with other information we have available and train a regression model to predict the rating.

Obtaining user and product factors

You can get the user factors or product factors from ML.WEIGHTS. For example, here’s how to get the product factors for movieId=96481 and user factors for userId=54192:

SELECT
 processed_input
 , feature
 , TO_JSON_STRING(factor_weights)
 , intercept
FROM ML.WEIGHTS(MODEL ch09eu.movie_recommender_16)
WHERE
(processed_input = 'movieId' AND feature = '96481')
OR
(processed_input = 'userId' AND feature = '54192')

The result is as follows:

	
		
				Row
				processed_input
				feature
				f0_
				intercept
		

	
	
		
				1
				movieId
				96481
				[{"factor”:16,"weight”:0.01274324364248563},{"factor”:15,"weight”:-0.026002830400362179},{"factor”:14,"weight”:-0.0088894978851240675},{"factor”:13,"weight”:0.010309411637259363},{"factor”:12,"weight”:-0.025990228913849212},{"factor”:11,"weight”:0.0037023423385396021},{"factor”:10,"weight”:-0.0016743710047063861},{"factor”:9,"weight”:0.018434530705228803},{"factor”:8,"weight”:-0.0016500835388799462},{"factor”:7,"weight”:-0.021652088589080184},{"factor”:6,"weight”:-0.00097969747732716637},{"factor”:5,"weight”:-0.056352201014532581},{"factor”:4,"weight”:-0.025090456181039382},{"factor”:3,"weight”:0.015317626028966519},{"factor”:2,"weight”:-0.00046084151232374118},{"factor”:1,"weight”:-0.0009461271544545048}]
				-1.1915305828542884
		

		
				2
				userId
				54192
				[{"factor”:16,"weight”:-0.66257902781387934},{"factor”:15,"weight”:-0.089502881890795027},{"factor”:14,"weight”:-0.14498342867805328},{"factor”:13,"weight”:0.57708118940369757},{"factor”:12,"weight”:-0.25409266698347688},{"factor”:11,"weight”:0.243523510689305},{"factor”:10,"weight”:0.48314159427498959},{"factor”:9,"weight”:0.21335694312220596},{"factor”:8,"weight”:0.34206958377350211},{"factor”:7,"weight”:-0.076313491055098021},{"factor”:6,"weight”:0.21214183741037482},{"factor”:5,"weight”:0.19387028511697624},{"factor”:4,"weight”:-0.42699681695332414},{"factor”:3,"weight”:0.046570444717220438},{"factor”:2,"weight”:0.25934273163373722},{"factor”:1,"weight”:-0.18839802656522864}]
				2.511409230366029
		

	

Multiplying these weights and adding the intercept is how you get the predicted rating for this combination of movieId and userId in the matrix factorization approach.

These weights also serve as a low-dimensional representation of the movie and user behavior. You can create a regression model to predict the rating given the user factors, product factors, and any other information that we know about our users and products.

Creating input features

The MovieLens dataset does not have any user information and has very little information about the movies themselves. To illustrate the concept, therefore, let’s create some synthetic information about users:

CREATE OR REPLACE TABLE ch09eu.movielens_users AS
SELECT
 userId
 , RAND() * COUNT(rating) AS loyalty
 , CONCAT(SUBSTR(CAST(userId AS STRING), 0, 2)) AS postcode
FROM
 ch09eu.movielens_ratings
GROUP BY userId

Input features about users can be obtained by joining the user table with the machine learning weights and selecting all of the user information and the user factors from the weights array:

WITH userFeatures AS (
 SELECT
 u.*,
 (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS user_factors
 FROM
 ch09eu.movielens_users u
 JOIN
 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
 ON
 processed_input = 'userId' AND feature = CAST(u.userId AS STRING)
)

SELECT * FROM userFeatures
LIMIT 5

This yields user features like these (you will need to remove the userId itself before feeding it into the regression model):

	
		
				Row
				userId
				loyalty
				postcode
				user_factors
		

	
	
		
				1
				65536
				72.51794801197904
				65
				0.038901538776462
		

		
				
				
				
				
				0.0019075355240976716
		

		
				
				
				
				
				0.011537776936285278
		

		
				
				
				
				
				-0.0322503841197857
		

		
				
				
				
				
				0.046464397209825425
		

		
				
				
				
				
				-0.015348467879503527
		

		
				
				
				
				
				0.05865111283285229
		

		
				
				
				
				
				0.04859058815259179
		

		
				
				
				
				
				0.017664456774125117
		

		
				
				
				
				
				0.006847553039523945
		

		
				
				
				
				
				0.012585216564478762
		

		
				
				
				
				
				-0.06506297976701378
		

		
				
				
				
				
				-0.005041156227839918
		

		
				
				
				
				
				-0.04187860699038322
		

		
				
				
				
				
				0.006216526560890197
		

		
				
				
				
				
				0.02711744261644579
		

	

Similarly, you can get product features for the movies data, except that you need to decide how to handle the genre because a movie could have more than one. If you decide to create a separate training row for each genre, you can construct the product features using the following:

WITH productFeatures AS (
 SELECT
 p.* EXCEPT(genres)
 , g
 , (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS product_factors
 FROM
 ch09eu.movielens_movies p, UNNEST(genres) g
 JOIN
 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
 ON
 processed_input = 'movieId' AND feature = CAST(p.movieId AS STRING)
)

SELECT * FROM productFeatures
LIMIT 5

This yields rows of the following form:

	
		
				Row
				movieId
				title
				g
				product_factors
		

	
	
		
				1
				1450
				Prisoner of the Mountains (Kavkazsky plennik) (1996)
				War
				0.9883690055578206
		

		
				
				
				
				
				1.3052751077485096
		

		
				
				
				
				
				-1.4000285383517228
		

		
				
				
				
				
				1.3901032474256991
		

		
				
				
				
				
				-0.32863748198986686
		

		
				
				
				
				
				-0.7688057246956399
		

		
				
				
				
				
				-1.1853591273232054
		

		
				
				
				
				
				-0.4553668299329251
		

		
				
				
				
				
				-0.14564591302024543
		

		
				
				
				
				
				-0.18609388556738163
		

		
				
				
				
				
				-0.3547198526732644
		

		
				
				
				
				
				0.06067380147330148
		

		
				
				
				
				
				-0.2733324088164271
		

		
				
				
				
				
				1.8302213060412562
		

		
				
				
				
				
				0.4753820155626278
		

		
				
				
				
				
				1.559946725190114
		

	

By combining these two WITH clauses and pulling in the rating corresponding to the movieId-userId combination (if it exists in the ratings table), you can create the training dataset:22

CREATE OR REPLACE TABLE ch09eu.movielens_hybrid_dataset AS

WITH userFeatures AS (
 SELECT
 u.*,
 (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS user_factors
 FROM
 ch09eu.movielens_users u
 JOIN
 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
 ON
 processed_input = 'userId' AND feature = CAST(u.userId AS STRING)
),

productFeatures AS (
 SELECT
 p.* EXCEPT(genres)
 , g
 , (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS product_factors
 FROM
 ch09eu.movielens_movies p, UNNEST(genres) g
 JOIN
 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w
 ON
 processed_input = 'movieId' AND feature = CAST(p.movieId AS STRING)
)

SELECT p.* EXCEPT(movieId), u.* EXCEPT(userId), rating
FROM productFeatures p, userFeatures u
JOIN
 ch09eu.movielens_ratings r
ON
 r.movieId = p.movieId AND r.userId = u.userId

One of the rows of this table looks like this:

	
		
				1
				Hunted, The (2003)
				Action
				2.6029616190628015
				692.7156232519949
				70
				0.026523240535672774
				2.0
		

	
	
		
				
				
				
				0.33485455845698525
				
				
				0.0019319939217823622
				
		

		
				
				
				
				0.31628840722516194
				
				
				-0.0020145595411925534
				
		

		
				
				
				
				-0.3075233831543138
				
				
				-0.002646563034985453
				
		

		
				
				
				
				-0.4473419662482839
				
				
				-0.01594551937825673
				
		

		
				
				
				
				-1.0222758233057185
				
				
				-0.010801066706191506
				
		

		
				
				
				
				-0.42418301494313826
				
				
				4.772572135005211E-4
				
		

		
				
				
				
				-1.2447809221572947
				
				
				0.014766024570817101
				
		

		
				
				
				
				-0.20242685993451942
				
				
				-0.007500869241538576
				
		

		
				
				
				
				1.330350771422776
				
				
				-0.020383420117709883
				
		

		
				
				
				
				-0.3354935275410769
				
				
				-0.007863867111381763
				
		

		
				
				
				
				0.32404375319192513
				
				
				0.019901597021923123
				
		

		
				
				
				
				1.402657314320568
				
				
				-0.003178194776711233
				
		

		
				
				
				
				0.4728896971092763
				
				
				0.013146874239054253
				
		

		
				
				
				
				-0.5743444547904143
				
				
				-0.0017117741950437
				
		

		
				
				
				
				0.35632448579921905
				
				
				-0.030130776462043048
				
		

	

Essentially, you have a couple of attributes about the movie, the product factors array corresponding to the movie, a couple of attributes about the user, and the user factors array corresponding to the user. These form the inputs to the “hybrid” recommendations model that builds off the matrix factorization model and adds in metadata about users and movies.

Training hybrid recommendation model

As of this writing, BigQuery ML cannot handle arrays as inputs to a regression model. Let’s therefore define a function to convert arrays to a struct for which the array elements are its fields:

CREATE OR REPLACE FUNCTION ch09eu.arr_to_input_3(a ARRAY<FLOAT64>)
RETURNS STRUCT<a1 FLOAT64, a2 FLOAT64, a3 FLOAT64> AS (
STRUCT(
 a[OFFSET(0)]
 , a[OFFSET(1)]
 , a[OFFSET(2)]
));

Now you can do the following:

SELECT
 ch09eu.arr_to_input_3(a).*
FROM
(SELECT [34.23, 43.21, 63.21] AS a)

And here’s your result:

	
		
				Row
				a1
				a2
				a3
		

	
	
		
				1
				34.23
				43.21
				63.21
		

	

You can create a similar function named ch09eu.arr_to_input_16_users to convert the user factor array into named columns, and a similar function for the product factor arrays.23 Then you can tie together metadata about users and products with the user factors and product factors obtained from the matrix factorization approach to create a regression model to predict the rating:

CREATE OR REPLACE MODEL ch09eu.movielens_recommender_hybrid
OPTIONS(model_type='linear_reg', input_label_cols=['rating'])
AS

SELECT
 * EXCEPT(user_factors, product_factors)
 , ch09eu.arr_to_input_16_users(user_factors).*
 , ch09eu.arr_to_input_16_products(product_factors).*
FROM
 ch09eu.movielens_hybrid_dataset

There is no point in looking at the evaluation metrics of this model, because the user information we used to create the training dataset was fake (note the RAND() in the creation of the loyalty column)—we did this exercise to demonstrate how it could be done. And of course, we could train a dnn_regressor model and optimize the hyperparameters if we want a more sophisticated model. But if we are going to go that far, it might be better to consider using AutoML tables, which we cover in the next section.

Custom Machine Learning Models on GCP

Whereas BigQuery ML provides you a choice of models24 that can be built and iterated over very quickly, AutoML provides you with a state-of-the-art, high-quality model for the task, with the trade-off being that the model takes hours or even days to train. Keras and TensorFlow provide lower-level control of machine learning model architectures and allow you to design, develop, and deploy custom machine learning models. We recommend that you begin with BigQuery ML for machine learning on structured or semi-structured data and, depending on your skill set and the value of the problem being solved, use AutoML or Keras to fine-tune the machine learning problem.

Hyperparameter Tuning

When you’re carrying out machine learning, there are many parameters that you choose rather arbitrarily. These include factors such as the learning rate, the level of L2 regularization, the number of layers and nodes in a neural network, the maximum depth of a boosted tree, and the number of factors of a matrix factorization model. It is often the case that choosing a different value for these could result in a better model (as measured by the error on a withheld evaluation dataset). Choosing a good value for these parameters is called hyperparameter tuning.

Hyperparameter tuning using scripting

Take the k-means clustering model. The evaluation tab in the BigQuery web UI (as well as SELECT * from ML.EVALUATE) shows the Davies-Bouldin index, which is useful for determining the optimal number of clusters supported by the data (the lower the number, the better the clustering).

For example, here’s a script to try varying the number of clusters:

DECLARE NUM_CLUSTERS INT64 DEFAULT 3;
DECLARE MIN_ERROR FLOAT64 DEFAULT 1000.0;
DECLARE BEST_NUM_CLUSTERS INT64 DEFAULT -1;
DECLARE MODEL_NAME STRING;

WHILE NUM_CLUSTERS < 8 DO

 SET MODEL_NAME = CONCAT('ch09eu.london_station_clusters_',
 CAST(NUM_CLUSTERS AS STRING));

 CREATE OR REPLACE MODEL MODEL_NAME
 OPTIONS(model_type='kmeans',
 num_clusters=NUM_CLUSTERS,
 standardize_features = true) AS
 SELECT * except(station_name)
 from ch09eu.stationstats;

 SET error = (SELECT davies_bouldin_index FROM ML.EVALUATE(MODEL MODEL_NAME));
 IF error < MIN_ERROR THEN
 SET MIN_ERROR = error;
 SET BEST_NUM_CLUSTERS = NUM_CLUSTERS;
 END IF;

 SET NUM_CLUSTERS = NUM_CLUSTERS + 1;

END WHILE

Hyperparameter tuning in Python

Alternatively, you could do this using Python and its multithreading capability to limit the number of concurrent queries:25

def train_and_evaluate(num_clusters: Range, max_concurrent=3):
 # grid search means to try all possible values in range
 params = []
 for k in num_clusters.values():
 params.append(Params(k))

 # run all the jobs
 print('Grid search of {} possible parameters'.format(len(params)))
 pool = ThreadPool(max_concurrent)
 results = pool.map(lambda p: p.run(), params)

 # sort in ascending order
 return sorted(results, key=lambda p: p._error)

In this code, the run() method of the Params class invokes the appropriate training and evaluation queries:

class Params:
 def __init__(self, num_clusters):
 self._num_clusters = num_clusters
 self._model_name = (
 'ch09eu.london_station_clusters_{}'.format(num_clusters))
 self._train_query = """
 CREATE OR REPLACE MODEL {}
 OPTIONS(model_type='kmeans',
 num_clusters={},
 standardize_features = true) AS
 SELECT * except(station_name)
 from ch09eu.stationstats
 """.format(self._model_name, self._num_clusters)
 self._eval_query = """
 SELECT davies_bouldin_index AS error
 FROM ML.EVALUATE(MODEL {});
 """.format(self._model_name)
 self._error = None

 def run(self):
 bq = bigquery.Client(project=PROJECT)
 job = bq.query(self._train_query, location='EU')
 job.result() # wait for job to finish
 evaldf = bq.query(self._eval_query, location='EU').to_dataframe()
 self._error = evaldf['error'][0]
 return self

When searching in the range [3,9], you find that the number of clusters at which the error is minimized is 7:

ch09eu.london_station_clusters_7 1.551265 7
ch09eu.london_station_clusters_9 1.571020 9
ch09eu.london_station_clusters_6 1.571398 6
ch09eu.london_station_clusters_4 1.596398 4
ch09eu.london_station_clusters_8 1.621974 8
ch09eu.london_station_clusters_5 1.660766 5
ch09eu.london_station_clusters_3 1.681441 3

Hyperparameter tuning using AI Platform

In both of the hyperparameter tuning methods that we’ve considered so far, we tried out every possible value of a parameter that fell within a range. As the number of possible parameters grows, a grid search becomes increasingly wasteful. It is better to use a more efficient search algorithm, and that’s where Cloud AI Platform’s hyperparameter tuning can be helpful. You can use the hyperparameter tuning service for any model (not just TensorFlow). Let’s apply it to tuning the feature engineering and number of nodes of a DNN model.26

First, create a configuration file that specifies the ranges for each of the parameters, the number of concurrent queries, and the total number of trials:

trainingInput:
 scaleTier: CUSTOM
 masterType: standard # See: https://cloud.google.com/ml-
engine/docs/tensorflow/machine-types
 hyperparameters:
 goal: MINIMIZE
 maxTrials: 50
 maxParallelTrials: 2
 hyperparameterMetricTag: mean_absolute_error
 params:
 - parameterName: afternoon_start
 type: INTEGER
 minValue: 9
 maxValue: 12
 scaleType: UNIT_LINEAR_SCALE
 - parameterName: afternoon_end
 type: INTEGER
 minValue: 15
 maxValue: 19
 scaleType: UNIT_LINEAR_SCALE
 - parameterName: num_nodes_0
 type: INTEGER
 minValue: 10
 maxValue: 100
 scaleType: UNIT_LOG_SCALE
 - parameterName: num_nodes_1
 type: INTEGER
 minValue: 3
 maxValue: 10
 scaleType: UNIT_LINEAR_SCALE

Note that we have specified minimum and maximum values for each of the parameters and the metric (mean absolute error) to be minimized. We are asking for optimization to happen using just 50 trials, whereas a grid search would have required trying out 4×4×90×7, or more than 10,000 options. So using the AI Platform hyperparameter tuning service results in a 200-fold savings!

Next, you create a Python program that invokes BigQuery to train and evaluate the model given a single set of these parameters:

def train_and_evaluate(args):
 model_name = "ch09eu.bicycle_model_dnn_{}_{}_{}_{}".format(
 args.afternoon_start, args.afternoon_end, args.num_nodes_0,
args.num_nodes_1
)
 train_query = """
 CREATE OR REPLACE MODEL {}
 TRANSFORM(* EXCEPT(start_date)
 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,
'weekday', 'weekend') as dayofweek
 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, {}, {}]) AS
hourofday
)
 OPTIONS(input_label_cols=['duration'],
 model_type='dnn_regressor',
 hidden_units=[{}, {}])
 AS

 SELECT
 duration
 , start_station_name
 , start_date
 FROM `bigquery-public-data`.london_bicycles.cycle_hire
 """.format(model_name,
 args.afternoon_start,
 args.afternoon_end,
 args.num_nodes_0,
 args.num_nodes_1)
 logging.info(train_query)
 bq = bigquery.Client(project=args.project,
 location=args.location,
 credentials=get_credentials())
 job = bq.query(train_query)
 job.result() # wait for job to finish

 eval_query = """
 SELECT mean_absolute_error
 FROM ML.EVALUATE(MODEL {})
 """.format(model_name)
 logging.info(eval_info)
 evaldf = bq.query(eval_query).to_dataframe()
 return evaldf['mean_absolute_error'][0]

Note that this code uses a specific value for each of the tunable parameters and returns the mean absolute error, which is the metric being minimized.

This error value is then written out:

hpt.report_hyperparameter_tuning_metric(
 hyperparameter_metric_tag='mean_absolute_error',
 metric_value=error,
 global_step=1)

The training program is submitted to the AI Platform Training service:

gcloud ai-platform jobs submit training $JOBNAME \
 --runtime-version=1.13 \
 --python-version=3.5 \
 --region=$REGION \
 --module-name=trainer.train_and_eval \
 --package-path=$(pwd)/trainer \
 --job-dir=gs://$BUCKET/hparam/ \
 --config=hyperparam.yaml \
 —\
 --project=$PROJECT --location=EU

The resulting output, shown in the AI Platform console, contains the best parameters.

AutoML

AutoML consists of a family of products that provide a code-free way to automatically create and deploy state-of-the-art machine learning models. They tend to rely on applying a variety of feature engineering, hyperparameter tuning, neural architecture search, transfer learning, and ensembling methods to build models that have comparable quality to models manually crafted by top machine learning experts.

Tip

Use BigQuery ML to formulate your machine learning problems—to identify the features and labels, to quickly diagnose whether some new dataset improves accuracy, to detect mistakes in assumptions about time-dependence, and to determine the best way of representing some piece of domain knowledge. The fast iteration capability that BigQuery ML provides is invaluable, as is the ability to train models without moving data outside the data warehouse. After you have identified a feasible machine learning problem, you can use AutoML to get a very accurate model on the specific training dataset (features and labels). In our experience, AutoML infused with features that represent the insights of domain experts is hard to beat either in terms of accuracy or in terms of time to deployment.

AutoML Vision, for example, provides a web-based interface to upload images (or point to images on Google Cloud Storage), identify their labels, and launch the training of image classification or object detection models.

Because the data in BigQuery tends to be structured or semi-structured, the AutoML models that are relevant tend to be AutoML Natural Language (to do tasks such as text classification and entity detection), AutoML Tables (to do tasks such as regression, classification, and time-series forecasting on structured data), and AutoML Recommendations (to build state-of-the-art recommendation models).

To use AutoML Tables (Figure 9-10), simply visit the starting point on the GCP console, point it at a BigQuery table, select the feature columns and label column, and then click Train. Although training will take much longer (on the order of 12 to 24 hours), the resulting accuracy tends to be higher than what you might have achieved on the same dataset with BigQuery ML.

[image: AutoML Tables can start from a BigQuery table, the same training dataset that was built through iterative exploration and experimentation in BigQuery ML. In our experience, AutoML Tables applied to thoughtfully created training datasets provides state-of-the-art performance.]
Figure 9-10. AutoML Tables can start from a BigQuery table, the same training dataset that was built through iterative exploration and experimentation in BigQuery ML. In our experience, AutoML Tables applied to thoughtfully created training datasets provides state-of-the-art performance.

Support for TensorFlow

Even though BigQuery ML is scalable and convenient, and AutoML powerful and accurate, there are times when you might want to build your own custom models using Keras or TensorFlow. You might also find it advantageous to train models using TensorFlow and predict using BigQuery, or to train models in BigQuery but deploy into TensorFlow Serving.

It is possible to access BigQuery directly from TensorFlow code and to export BigQuery tables to TensorFlow records, transforming the data along the way. There is also interoperability between BigQuery and TensorFlow models—it is possible to load a TensorFlow model into BigQuery and to export a BigQuery model in TensorFlow’s SavedModel format. We cover these capabilities in this section.

TensorFlow’s BigQueryReader

A TensorFlow input pipeline can read from a BigQuery table into keyed TensorFlow Examples using BigQueryReader. First, create a features dictionary of the columns of interest:

features = dict(
 start_station_name=tf.FixedLenFeature([1], tf.string),
 duration=tf.FixedLenFeature([1], tf.int32))

Then create a reader specifying the timestamp at which the data is to be read (because the BigQuery table could be receiving streamed data while we are reading it) and the number of threads (partitions) in which the table is to be read:

reader = tf.contrib.cloud.BigQueryReader(project_id=PROJECT,
 dataset_id=DATASET,
 table_id=TABLE,
 timestamp_millis=TIME,
 num_partitions=NUM_PARTITIONS,
 features=features)

Finally, populate a queue with the BigQuery Table partitions, and use it to read the TensorFlow examples:

queue = tf.train.string_input_producer(reader.partitions())
row_id, examples_serialized = reader.read(queue)
examples = tf.parse_example(examples_serialized, features=features)

Although this works, there are several problems with this approach. In machine learning training, you will need to read batch_size records at once, shuffle the read order across workers, prefetch records, and so on. Hence, we recommend that you do not follow this approach.

Using pandas

If the BigQuery table is small enough, read it directly into an in-memory pandas DataFrame:

query = """
SELECT
 start_station_name
 , duration
FROM `bigquery-public-data`.london_bicycles.cycle_hire
GROUP BY start_station_name
"""
df = bq.query(query, location='EU').to_dataframe()

Use the tf.data API to read from pandas:

tf.estimator.inputs.pandas_input_fn(
 df,
 batch_size=128,
 num_epochs=10,
 shuffle=True,
 num_threads=8,
 target_column='duration'
)

Apache Beam/Cloud Dataflow

If the table is too large to fit into memory, export the BigQuery data into TensorFlow records on Google Cloud Storage using Cloud Dataflow (see Chapter 5 for more details):

_ = (
 examples
 | 'get_tfrecords' >> beam.Map(lambda x: x['tfrecord'])
 | 'writetfr' >> beam.io.tfrecordio.WriteToTFRecord(
 os.path.join(options['outdir'], 'tfrecord', step)))

Each of the previous examples is created by pulling the necessary records from BigQuery:

 tfexample = tf.train.Example(
 features=tf.train.Features(
 feature={
 'start_station_name': _bytes_feature(row['start_station_name']),
 'duration': _int64_feature(row['duration']),
 }))

Along the way, if necessary, you can transform the records using tf.transform. Then, in TensorFlow, you can use the high-throughput methods provided by tf.data.tfrecorddataset to read in the data.

Exporting to TensorFlow

The TensorFlow ecosystem for serving is very powerful—it is possible to carry out predictions of TensorFlow models in a web browser using JavaScript and tensorflow.js, on an embedded device or mobile application using TensorFlow Lite, in Kubernetes clusters using Kubeflow, as a REST API using AI Platform Predictions, and more. Therefore, you might find it advantageous to export your BigQuery ML model as a TensorFlow SavedModel. After the BigQuery ML model has been exported, you can use it in any of the environments that can serve TensorFlow models.

Predicting with TensorFlow models

If you have trained a model in TensorFlow and exported it as a SavedModel, you can import the TensorFlow model into BigQuery and use the ML.PREDICT SQL function in BigQuery to make predictions. This is very useful if you want to make batch predictions (e.g., to make predictions for all the data collected in the past hour), given that any SQL query can be scheduled in BigQuery.

Importing the model into BigQuery is simply a matter of specifying a different model_type and pointing it at the model_path from which the SavedModel was exported (note the wildcard at the end to pick up the assets, vocabulary, etc.):

CREATE OR REPLACE MODEL ch09eu.txtclass_tf
OPTIONS (model_type='tensorflow',
 model_path='gs://bucket/some/dir/1549825580/*')

This creates a model in BigQuery that works like any built-in model, as illustrated in Figure 9-11. Here, the schema indicates that the required input to the model is called “input” and is a string.

[image: The schema of the imported TensorFlow model.]
Figure 9-11. The schema of the imported TensorFlow model

Given this schema, we can now do a prediction:

SELECT
 input,
 (SELECT AS STRUCT(p, ['github', 'nytimes', 'techcrunch'][ORDINAL(s)])
 prediction
FROM
 (SELECT p, ROW_NUMBER() OVER() AS s FROM
 (SELECT * FROM UNNEST(dense_1) AS p))
 ORDER BY p DESC LIMIT 1).*
FROM ML.PREDICT(MODEL advdata.txtclass_tf,
(
SELECT 'Unlikely Partnership in House Gives Lawmakers Hope for Border Deal' AS
input
UNION ALL SELECT "Fitbit\'s newest fitness tracker is just for employees and
health insurance members"
UNION ALL SELECT "Show HN: Hello, a CLI tool for managing social media"
))

This is very powerful because we can now train a machine learning model, save it to Google Cloud Storage, import it into BigQuery, and carry out periodic predictions without the need to move the data for predictions out of the data warehouse.

Summary

In this chapter, we did a whirlwind tour of machine learning in BigQuery. We began by discussing different types of machine learning problems that work on structured and semi-structured data and how to train and predict machine learning models for all of those problems in BigQuery.

To train a regression model in BigQuery, we created a training dataset consisting of features and a label. Next, we were able to create a trained model, evaluate it, and then use it for predictions. We also iterated through a variety of improvements to the basic model and discussed how to extract the model weights. Finally, we examined how to train not just linear models but also DNNs and boosted regression trees.

Training a classification model in BigQuery was similar, except that the evaluation metrics were more sophisticated—we discussed how to choose the threshold in a binary classification problem to obtain a desired value of precision or recall.

We also looked at various customizations that might prove important on specific problems—things like changing the way the data is split between training and evaluation, balancing classes when one class is rarer than the other, and regularization to limit overfitting.

We also showed how to find clusters from structured data using the k-means algorithm and how to visualize the cluster attributes using Data Studio and make data-driven decisions.

The final type of machine learning model we examined in this chapter was on recommendation systems. We built a matrix factorization model to solve both product recommendation and customer targeting problems. We also discussed how to use the user factors and item factors that result from matrix factorization to train a more sophisticated model that includes data about users and products beyond their rating behavior.

Finally, we looked at the rest of the GCP ecosystem for custom models—hyperparameter tuning, AutoML, and TensorFlow. We discussed the interoperability between these different ways of building machine learning models, and when you would use which.

1 See https://en.wikipedia.org/wiki/Motion_picture_content_rating_system.
2 The individual words of the movie title might be more appropriate, as long as we take care to apply common Natural Language Processing techniques such as tokenization, stemming, and word embedding. Calculated features about the title of the movie might also prove useful; for example, the length of the title might have some predictive power, or whether the title has the word “spy” in it.
3 In the BigQuery web user interface, click Explore in Data Studio.
4 We could have treated these variables as continuous, but we would then be faced with unappealing choices about how to deal with the fact that dayofweek=7 is closer to dayofweek=1 than to dayofweek=5. For the record, some of these unappealing choices include: (a) storing the dayofweek twice, one in its current form and the other as MOD(dayofweek+3,7); and (b) replacing dayofweek by sin(2π * dayofweek / 7.0). They are unappealing because of how difficult they are to explain to stakeholders. If this is not a concern and you are solving a similar problem, it is worth experimenting with all three representations to see which one performs best.
5 Create it if necessary; it needs to be in the EU region because the data we are training on is in the EU.
6 This is because BigQuery is able to compute a closed-form solution to this linear regression problem. For more details, see https://oreil.ly/0svPQ.
7 Other error measures (mean squared error, mean squared log error, median absolute error, etc.) are also reported. For most regression problems, the mean absolute error strikes a good balance between insensitivity to outliers and sensitivity to iterative improvements. Use the mean absolute error unless you have a strong reason not to do so.
8 The interval [a,b) means that a is included and b is not; in other words, this is the interval a ≤ x < b.
9 Indeed, this is the default behavior of BigQuery if the input feature is a TIMESTAMP. Just as the default behavior of BigQuery to string values is to one-hot encode it, the default behavior of BigQuery when supplied a TIMESTAMP is to extract pieces such as day-of-week from it. Specifying the transformation ourselves gives us more granular control.
10 See https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview. Cloud AI Platform Predictions allows you to submit a machine learning training job where you specify a range of values to search within.
11 Many decision-tree packages provide a measure of “feature importance,” which loosely means how often a feature is used in the ensemble of trees. However, if you have two features that are correlated, the importance will be split between them, and so explainability suffers in real-world datasets.
12 XGBoost stands for eXtreme Gradient Boost, where gradient boosting is the technique proposed in the paper “Greedy Function Approximation: A Gradient Boosting Machine”, by Jerome H. Friedman.
13 The precision (or true positive rate) is the fraction of times that the model is correct when it predicted the positive class. In other words, if the model predicted roadbike 100 times, it will be correct 25.7 times. The recall is the fraction of positive instances that the model predicts correctly—that is, the fraction of times a road bike is required that the model predicts roadbike. For multiclass problems, the reported precision (or recall) corresponds to the mean precision when treating each category as a binary classification problem.
14 BigQuery estimates a good value through line search at the start of each iteration through the data.
15 Scale all numeric inputs to have zero mean and unit variance.
16 By default, randomly select 20% of the rows for evaluation.
17 This is better because it is possible that days on which station A is busy are the days on which station B is also busy. A random split might end up causing leakage of this information if Christmas 2009 at station A is in training and Christmas 2009 at station B is in evaluation. By controlling the split to happen so that the last few days of the dataset are not seen in training, we are able to more closely model how we plan to train our model on historical data and then deploy it.
18 For more information about L1 and L2, see www.robotics.stanford.edu/~ang/papers/icml04-l1l2.ps.
19 The k-means algorithm is sensitive to the initial starting point, and because starting points are chosen randomly, your results might be different.
20 The reason the duration of iterations swings back and forth is because the underlying optimization algorithm processes users in one iteration and movies in the next, and there are so many more users than movies.
21 This might sound weird. Why a third lower and not half? Essentially, the idea is that, starting from 16, 24 is 50% higher. We want to try a geometric progression of candidate values for num_factors so that we cover the candidate space quickly. If you are trying more than three possible num_factors, consider trying a sequence of num_factors, each of which is about sqrt(2) times higher than the previous. For example, you could try 4, 6, 8, 12, 16, 24, 32, 48, 64, and so on.
22 See 09_bqml/hybrid.sql in the GitHub repository for this book.
23 See 09_bqml/arr_to_input16.sql in the GitHub repository for this book.
24 By the time you are reading this, automl might well be one of the supported model types in BigQuery.
25 For the full code, see 09_bqml/hyperparam.ipynb in the GitHub repository for this book.
26 The full code is available at https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/09_bqml/hyperparam.ipynb.

Index
Symbols
	! (exclamation mark), lines in Jupyter Notebook preceded by, Notebooks on Google Cloud Platform
	! (logical negation) operator, Comparisons
	!= (not-equals) comparison operator, Comparisons
	# (pound sign), comments beginning with, Retrieving Rows by Using SELECT
	$ (dollar sign), end of string matching in regular expressions, Regular Expressions
	% (percent sign)	enclosing named parameters, Named parameters
	lines in Jupyter Notebook preceded by, Notebooks on Google Cloud Platform

	%%bigquery Magics (see Jupyter)
	& (bitwise AND) operator, Numeric Types and Functions, Comparisons
	() (parentheses)	controlling order of evaluation, Filtering with WHERE
	enclosing subqueries, Subqueries with WITH
	grouping in regular expressions, Regular Expressions

	, (comma)	comma cross join, CROSS JOIN
	in correlated CROSS JOIN, Using arrays for generating data
	leading commas in SELECT clause, Creating Arrays by Using ARRAY_AGG

	- (hyphen), escaping in dataset name, Retrieving Rows by Using SELECT
	-- (double dash), comments beginning with, Retrieving Rows by Using SELECT
	; (semicolon) separating statements in a script, A sequence of statements
	<, <=, >, >=, and != (or <>) comparison operators, Comparisons	using with Boolean variables, Logical Operations

	<< (bitwise) operator, Numeric Types and Functions
	<> (not-equals) comparison operator, Comparisons
	>> (bitwise) operator, Numeric Types and Functions
	? (question mark), in positional parameters, Positional parameters
	?: (capture group) in regular expressions, Regular Expressions
	@ (at symbol), marking named parameters, Named parameters
	@run_date parameter, Named timestamp parameters
	@run_time parameter, Named timestamp parameters
	[] (square brackets), array operator, A Brief Primer on Arrays and Structs
	\d matching digits in regular expressions, Regular Expressions
	\s matching spaces in regular expressions, Regular Expressions
	`` (backticks), escape character in dataset name, Retrieving Rows by Using SELECT
	| (bitwise OR) operator, Numeric Types and Functions, Comparisons
	ʌ (caret), beginning of string matching in regular expressions, Regular Expressions

A
	access control	BigQuery's use of Google's IAM system, Security and Compliance
	Identity and Access Management (IAM), Identity and Access Management-Resource
	on dataset, examining using dsinfo object, Dataset information

	access tokens, Table manipulation
	Access Transparency program, Access transparency
	ACID operations with BigQuery, Managed Storage
	admin role, Predefined roles
	administering BigQuery, Administering and Securing BigQuery, Administering BigQuery-Stackdriver monitoring and audit logging	authorizing users, Authorizing Users
	availability, disaster recovery, and encryption, Availability, Disaster Recovery, and Encryption-Customer-Managed Encryption Keys
	continuous integration/continuous deployment, Continuous Integration/Continuous Deployment-Cost/Billing Exports
	cost/billing exports, Cost/Billing Exports-Dashboards, Monitoring, and Audit Logging
	dashboards, monitoring, and audit logging, Dashboards, Monitoring, and Audit Logging-Stackdriver monitoring and audit logging
	job management, Job Management
	regulatory compliance, Regulatory Compliance-Data Exfiltration Protection
	restoring deleted records and tables, Restoring Deleted Records and Tables

	Advanced Encryption Standard (AES-256), Infrastructure Security
	advanced queries (see queries)
	aggregates, Aggregates-A Brief Primer on Arrays and Structs	AGGREGATE in join+ stage of broadcast JOIN query, Broadcast JOIN query
	AGGREGATE step in scan-filter-aggregate query, Stage 0
	array, Creating Arrays by Using ARRAY_AGG	(see also ARRAY_AGG function)

	computing using GROUP BY, Computing Aggregates by Using GROUP BY
	counting records using COUNT function, Counting Records by Using COUNT
	filtering grouped items using HAVING, Filtering Grouped Items by Using HAVING
	finding unique values using DISTINCT, Finding Unique Values by Using DISTINCT

	aggregation functions, Numeric Types and Functions	approximate, Using Approximate Aggregation Functions-Optimizing How Data Is Stored and Accessed	(see also APPROX_* functions; HLL functions)

	not defined on Booleans, Using COUNTIF to Avoid Casting Booleans

	aggregations	aggregating analytic functions, Aggregate analytic functions-Aggregate analytic functions
	centroid of an aggregate of geometries, Geometry transformations and aggregations
	manual, using HLL function, HLL functions

	AI (artificial intelligence)	AI Factory section of GCP Cloud Console, Notebooks on Google Cloud Platform
	AI Platform, Hyperparameter tuning using AI Platform	(see also Cloud AI Platform)

	Cloud AI Platform, training ML programs from data in BigQuery, Integration with Google Cloud Platform

	aliasing	retaining use of an alias with subqueries, Subqueries with WITH
	using aliases in ORDER BY, Sorting with ORDER BY
	using AS to alias column names, Aliasing Column Names with AS

	allAuthenticatedUsers, access for, Identity
	Alpega Group, use of BigQuery, Data Processing Architectures
	ALTER TABLE SET OPTIONS statement, Data Management (DDL and DML), Labels and tags, Changing options
	analytic functions, Numeric Types and Functions, Window Functions	(see also window functions)

	analytic window functions, Window Functions	(see also window functions)

	analytics	creating pivot table from BigQuery Data Sheet, Exploring BigQuery tables as a data sheet in Google Sheets
	moving the computation to the data, How BigQuery Came About
	powerful, performing with BigQuery, Powerful Analytics

	AND condition, combining categorical features into, Human insights and auxiliary data
	AND keyword, Filtering with WHERE
	ANY_VALUE, GIS Measures
	Apache Beam, Writing a Dataflow job, Using the Streaming API directly, Cloud Dataflow	exporting BigQuery data into TensorFlow records on GCS, Apache Beam/Cloud Dataflow

	Apache Hive, loading and querying Hive partitions, Loading and querying Hive partitions
	Apache Spark, MapReduce Framework
	API gateway infrastructure, secured global, Infrastructure Security
	APIs	BigQuery API for data using other frameworks, Managed Storage	(see also REST APIs)

	application-default credentials, Table manipulation
	APPROX_* functions	APPROX_COUNT_DISTINCT, Using Approximate Aggregation Functions, HLL functions
	APPROX_QUANTILES, Approximate top, Quantiles
	APPROX_TOP_COUNT, Approximate top
	APPROX_TOP_SUM, Approximate top

	Apps Scripts client library, Incorporating BigQuery Data into Google Slides (in G Suite)
	architecture of BigQuery, Architecture of BigQuery-Summary	Dremel query engine, Query Engine (Dremel)-Hash join query	query execution, Query Execution-Hash join query
	Query Masters, Query Master
	scheduler, Scheduler
	shuffle, Shuffle
	worker shards, Worker Shard

	high-level, High-Level Architecture-BigQuery Upgrades	life of a query request, Life of a Query Request-Step 5: Returning the query results
	upgrades to BigQuery components, BigQuery Upgrades

	storage, Storage-Meta-File	metadata, Metadata-Meta-File
	physical storage in Colossus, Physical storage: Colossus-Physical storage: Colossus
	storage format, Capacitor, Storage format: Capacitor-Storage format: Capacitor

	upgrades, BigQuery Upgrades

	arithmetic operations	supported by INT64 and FLOAT64 types, Numeric Types and Functions
	with timestamps, Arithmetic with Timestamps

	ARRAY type, Creating Arrays by Using ARRAY_AGG, Data Types, Functions, and Operators, Summary	JSON arrays, Creating Arrays by Using ARRAY_AGG

	arrays, A Brief Primer on Arrays and Structs-Joining Tables	adding entry using DML UPDATE, Updating row values
	ambiguities in Standard SQL, Advanced SQL
	ARRAY of STRUCT, Array of STRUCT
	ARRAY of tuples or anonymous struct, TUPLE
	array parameters, Array and struct parameters
	BigQuery support for, Powerful Analytics
	converting to structs for hybrid recommendation model, Training hybrid recommendation model
	creating using ARRAY type and ARRAY_AGG function, Creating Arrays by Using ARRAY_AGG
	experimenting with, A Brief Primer on Arrays and Structs
	finding length of and retrieving individual items, Working with Arrays
	in a script, Anatomy of a simple script
	NULL elements in, Creating Arrays by Using ARRAY_AGG
	storing data as arrays of structs, Storing data as arrays of structs-Storing data as arrays of structs
	string representations, Internationalization
	unnesting, UNNEST an Array
	working with, in advanced SQL, Working with Arrays-Window Functions	array functions, Array functions-Array functions
	using arrays in generating data, Using arrays for generating data
	using arrays to preserve ordering, Using arrays to preserve ordering
	using arrays to store repeated fields, Using arrays to store repeated fields

	ARRAY_AGG function, Creating Arrays by Using ARRAY_AGG, Numbering functions	using with GROUP BY, Data skew

	ARRAY_CONCAT function, Array functions
	ARRAY_LENGTH function, Working with Arrays, Using arrays for generating data
	ARRAY_TO_STRING function, Array functions
	artificial intelligence (see AI; machine learning)
	AS statement, aliasing column names with, Aliasing Column Names with AS-Filtering with WHERE
	audit logging, Stackdriver monitoring and audit logging
	authorization tokens, Step 1: HTTP POST
	authorized views, Authorized views
	authorizing users, Authorizing Users
	AUTO partitioning mode, Loading and querying Hive partitions
	AutoML, Bulk reads using BigQuery Storage API	custom machine learning models, AutoML-Support for TensorFlow
	models, Custom Machine Learning Models on GCP

	auxiliary data for regression model, Human insights and auxiliary data
	availability, Availability, Disaster Recovery, and Encryption-Regional failures	BigQuery and failure handling, BigQuery and Failure Handling-Regional failures

	availability zones, Storage Data
	averages, computing, Named timestamp parameters, Aggregate analytic functions
	AVG function, Computing Aggregates by Using GROUP BY, Creating Arrays by Using ARRAY_AGG, Aggregate analytic functions	decimal calculations and, Precise Decimal Calculations with NUMERIC

	Avro files, ETL, EL, and ELT	benefits and drawback of, Loading Data Efficiently
	extraction format for table data using Google Cloud Client Library, Extracting data from a table

B
	backups, Durability, Backups, and Disaster Recovery
	bag of words, Unstructured data
	balancing classes in machine learning, Balancing Classes
	bandwidth, dynamic provisioning with BigQuery networking infrastructure, Storage and Networking Infrastructure
	bash	getting access tokens for BigQuery REST API URL via, Table manipulation
	heredoc syntax specifying EOF to begin/end query, Querying
	scripting with BigQuery, Bash Scripting with BigQuery-Summary	BigQuery objects, BigQuery Objects
	creating datasets and tables, Creating Datasets and Tables-Executing Queries
	executing queries, Executing Queries-BigQuery Objects
	reading multiline string into a variable, Executing Queries

	batch data, ingest of, support by BigQuery, Powerful Analytics
	BATCH job priority, Batch Queries
	batch queries, Batch Queries
	Beam (see Apache Beam)
	BI Engine, accelerating queries with, Accelerating queries with BI Engine
	BigQuery	about, Data Processing Architectures
	features making it successful and unique, What Makes BigQuery Possible?-Security and Compliance	integration with Google Cloud Platform, Integration with Google Cloud Platform
	managed storage, Managed Storage
	security and compliance, Security and Compliance
	separation of compute and storage, Separation of Compute and Storage
	storage and networking infrastructure, Storage and Networking Infrastructure

	model types in, Summary of model types
	origins of, How BigQuery Came About-How BigQuery Came About
	serverless, distributed SQL engine, BigQuery: A Serverless, Distributed SQL Engine
	working with, Working with BigQuery-Simplicity of Management	deriving insights across datasets, Deriving Insights Across Datasets
	ETL, EL, and ELT, ETL, EL, and ELT
	powerful analytics, Powerful Analytics
	simplicity of management, Simplicity of Management

	bigquery library from CRAN, Working with BigQuery from R
	BigQuery Mate, Estimating per-query cost
	.bigqueryrc file, Executing Queries
	BigQueryReader, TensorFlow’s BigQueryReader
	binary classification problems, Classification, Summary of model types	probability threshold, Choosing the Threshold

	bitwise operations (<< and >>), Numeric Types and Functions
	BOOL type, Data Types, Functions, and Operators, Summary
	Boolean expressions	in join conditions, INNER JOIN
	in WHERE clause, Filtering with WHERE, Logical Operations

	Booleans, Working with BOOL-String Functions	casting and coercion, Casting and Coercion
	cleaner NULL-handling with COALESCE, Cleaner NULL-Handling with COALESCE
	using COUNTIF to avoid casting, Using COUNTIF to Avoid Casting Booleans
	using in conditional expressions in SELECT, Conditional Expressions

	boosted decision trees, Gradient-boosted trees
	boosted_tree_classifier model type, Training
	boosted_tree_regressor model type, Gradient-boosted trees
	Borg container management system, Worker Shard
	bq command-line tool, Loading from a Local Source, Bash Scripting with BigQuery	adding a label to a dataset, Labels and tags
	--batch flag, Batch Queries
	bq extract command, Extracting data
	bq load command, Loading and inserting data	invoking from GCS locations, Impact of compression and staging via Google Cloud Storage
	invoking on data on Cloud Storage, Data Migration Methods
	options, finding full list of, Loading from a Local Source

	bq query command, Executing Queries
	bq wait, Copying datasets
	checking if a dataset exists with bq ls, Checking whether a dataset exists
	copying datasets using bq cp, Copying datasets
	copying tables using bq cp, Data Management (DDL and DML)
	creating a dataset in a different project with bq mk, Creating a dataset in a different project
	creating a table with bq mk --table, Creating a table
	creating a transfer job, Create a transfer job
	creating datasets using bq mk and specifying the location, Creating Datasets and Tables
	creating table definition using bq mkdef, How to Use Federated Queries
	deleting a table or view as a whole, Data Management (DDL and DML)
	--dry_run option, Estimating per-query cost
	examining information from query statistics, Scan-filter-count query
	initiating cross-region dataset copy via bq mk, Cross-region dataset copy
	listing BigQuery objects with bq ls, BigQuery Objects
	making external table definition with bq mk, How to Use Federated Queries
	previewing a table using bq head, Previewing data
	showing details of BigQuery objects with bq show, Showing details
	specifying Hive partition mode to bq load, Loading and querying Hive partitions
	SQL dialect used by, Executing Queries
	updating details of tables, datasets, and other objects with bq update, Updating
	using wildcards in file path for bq mkdef and bq load, Wildcards

	BREAK statement, Looping
	broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN query	coalesce stage, Broadcast JOIN query
	join+ stage, Broadcast JOIN query

	broadcast joins, Broadcast JOIN query
	bucketizing variables, Human insights and auxiliary data	for regression model, Bucketizing the hour of day

	bulk reads, using BigQuery Storage API, Bulk reads using BigQuery Storage API
	business intelligence (BI) tools, using on data held in BigQuery, Powerful Analytics
	BY HASH directive, Stage 0
	BYTES type, Data Types, Functions, and Operators, Summary
	BYTE_LENGTH function, Internationalization

C
	caching	increasing query speed by caching results, Caching the Results of Previous Queries-Accelerating queries with BI Engine	accelerating queries with BI Engine, Accelerating queries with BI Engine
	caching intermediate results, Caching intermediate results

	query history and, Query History and Caching

	calendar, extracting parts from timestamps, Extracting Calendar Parts
	cannibalization, What’s Being Clustered?
	Capacitor, Storage Data, Storage format: Capacitor-Storage format: Capacitor
	cardinality, Storage format: Capacitor	low, in partitions, Partitioning
	partitioning and clustering by, Reclustering

	casting	cast as bytes, Internationalization
	DATETIME to TIMESTAMP, Date, Time, and DateTime
	of Booleans, using COUNTIF to avoid, Using COUNTIF to Avoid Casting Booleans
	of strings to FLOAT64, Loading from a Local Source
	requiring explicit use of CAST function, Casting and Coercion
	string as INT64 or FLOAT64 to parse it, using CAST function, Printing and Parsing

	categorical_weights, Examining Model Weights
	centroid of an aggregate of geometries, Geometry transformations and aggregations
	charts, Saving query results to pandas	(see also visualizations)
	automatic, creating in Google Sheets using machine learning, Exploring BigQuery tables using Sheets

	CHAR_LENGTH function, Internationalization
	classification, Classification	building a classification model, Building a Classification Model-Choosing the Threshold	choosing the threshold, Choosing the Threshold
	evaluating the model, Evaluation
	predicting with the model, Prediction
	training the model, Training

	client API functions and SQL alternatives, Table manipulation
	client libraries, Summary	allowing programmatic queries and manipulation of BigQuery resources, Developing with BigQuery
	cloud client libraries for BigQuery, Step 5: Returning the query results
	for BigQuery REST API, Loading from a Local Source
	Google Cloud Client Library, Google Cloud Client Library
	versus JDBC/ODBC drivers, JDBC/ODBC drivers

	Cloud AI Platform (CAIP), Deep Neural Networks	hyperparameter tuning in, Hyperparameter tuning using AI Platform

	Cloud Bigtable, SQL Queries on Data in Cloud Bigtable-Improving performance	NoSQL queries on data based on row-key prefix, NoSQL Queries based on a row-key prefix
	SQL queries on data in, Ad hoc SQL queries on Cloud Bigtable data-Improving performance	improving performance, Improving performance

	Cloud Catalog, Integration with Google Cloud Platform
	Cloud Client API (Python), Parameterized Queries
	Cloud Composer, Integration with Google Cloud Platform, Loading from a Local Source
	Cloud Console	AI Factory section, Notebooks on Google Cloud Platform
	Cloud Dataflow template, creating to load data from MySQL, Using a Dataflow template to load directly from MySQL
	monitoring Dataflow job from, Cloud Dataflow
	Notebooks section, Open JupyterLab link, Notebooks on Google Cloud Platform
	requesting custom quota from, Estimating per-query cost

	Cloud Data Labeling Service, Clustering
	Cloud Dataflow, Bulk reads using BigQuery Storage API	accessing BigQuery from, Cloud Dataflow-Cloud Dataflow
	exporting BigQuery data into TensorFlow records on GCS, Apache Beam/Cloud Dataflow
	using for streaming inserts into BigQuery, File Loads
	using to read/write from BigQuery, Using Cloud Dataflow to Read/Write from BigQuery-Using the Streaming API directly	using Dataflow template to load directly from MySQL, Using a Dataflow template to load directly from MySQL
	using streaming API directly, Using the Streaming API directly
	writing a Dataflow job, Writing a Dataflow job

	Cloud Dataproc, Integration with Google Cloud Platform, Bulk reads using BigQuery Storage API
	Cloud Functions, Integration with Google Cloud Platform, Loading from a Local Source
	Cloud Natural Language, Unstructured data
	Cloud Pub/Sub, Minimizing Network Overhead	using for streaming inserts into BigQuery, File Loads

	Cloud Scheduler, Integration with Google Cloud Platform
	Cloud Shell	default text editor, Specifying a Schema
	downloading MovieLens dataset and loading it as BigQuery table, The MovieLens Dataset
	paging through gzipped file using zless, Loading from a Local Source

	Cloud Vision API, Unstructured data
	clustering, Clustering	clustering column in a query, Insert SELECT
	clustering tables based on high-cardinality keys, Clustering Tables Based on High-Cardinality Keys-Side benefits of clustering	clustering by partitioning column, Clustering by the partitioning column
	reclustering, Reclustering
	side benefits of clustering, Side benefits of clustering

	partitioning versus, Reclustering, Reclustering
	performance optimizations with clustered tables, Performance optimizations with clustered tables
	reclustering, Reclustering

	clustering (in machine learning), Clustering	k-means algorithm, k-Means Clustering-Data-Driven Decisions	carrying out clustering, Carrying Out Clustering
	clustering bicycle stations, Clustering Bicycle Stations
	determining what's being clustered, What’s Being Clustered?
	making data-driven decisions, Data-Driven Decisions
	understanding the clusters, Understanding the Clusters

	optimal number of clusters supported by data, Hyperparameter tuning using scripting

	clustering ratio, Reclustering
	COALESCE function, using to evaluate expressions until non-NULL value is obtained, Cleaner NULL-Handling with COALESCE
	coalesce stage, Broadcast JOIN query
	coercion, Casting and Coercion
	Coldline Storage, Setting up life cycle management on staging buckets
	Colossus File System, Storage and Networking Infrastructure, Step 5: Returning the query results, Storage Data	physical storage for BigQuery, Physical storage: Colossus
	sources of a query on, Worker Shard

	column stores, How BigQuery Came About
	column-oriented stores, Storage format: Capacitor, Clustering
	columnar files, Loading Data Efficiently
	columnar storage formats	Capacitor, Storage format: Capacitor-Storage format: Capacitor
	Parquet and Optimized Row Columnar (ORC), Storage format: Capacitor

	comma cross joins, CROSS JOIN
	comments, lines beginning with -- or #, Retrieving Rows by Using SELECT
	committed state (storage sets), Storage sets
	community-developed, open source UDFs, Public UDFs
	comparisons	carried out using <, <=, >, >=, and != (or <>) comparison operators, Comparisons
	comparison operators applied to NULL, Finding Unique Values by Using DISTINCT
	using comparison operators with Boolean variables, Logical Operations

	compliance, Security and Compliance	(see also regulatory compliance)

	compression of files, Loading from a Local Source	impact of, in loading data into BigQuery, Impact of compression and staging via Google Cloud Storage

	computation, moving to the data, How BigQuery Came About
	compute	scaling compute in BigQuery, Separation of Compute and Storage
	separation from storage in BigQuery, ETL, EL, and ELT, Separation of Compute and Storage

	compute_fit method, Cloud Dataflow
	CONCAT function, String Functions, String Manipulation Functions, Building queries dynamically
	concatenation of arrays, Array functions
	conda environment for Jupyter, Working with BigQuery from R
	conditional expressions, Conditional Expressions
	constants, defining, Defining constants
	container management system (Borg), Worker Shard
	CONTINUE statement, Looping
	continuous integration/continuous deployment (CI/CD), Continuous Integration/Continuous Deployment-Cost/Billing Exports
	correlated CROSS JOINs, Using arrays for generating data
	correlated subqueries, Correlated subquery	for cases seeming to require a script, A sequence of statements

	correlation coefficients, Correlation
	correlation, functions for, Correlation
	costs	controlling, Controlling Cost-Finding the most expensive queries	estimating per-query cost, Estimating per-query cost
	finding most expensive queries, Finding the most expensive queries

	cost/billing exports, Cost/Billing Exports-Dashboards, Monitoring, and Audit Logging	cost by month by product, Costs by month by product
	labels, using, Labels

	data loaded into BigQuery, Loading from a Local Source
	staging files on Google Cloud Storage, Impact of compression and staging via Google Cloud Storage

	COUNT function, counting records with, Counting Records by Using COUNT
	COUNTIF function, using to avoid casting Booleans, Using COUNTIF to Avoid Casting Booleans
	COUNT_STAR operator, Stage 0
	CRAN, bigquery library from, Working with BigQuery from R
	CREATE FUNCTION IF NOT EXISTS, Persistent UDFs
	CREATE FUNCTION statements, Persistent UDFs
	CREATE IF NOT EXISTS statement, Setting up destination table
	CREATE MODEL statement, Training and Evaluating the Model
	CREATE OR REPLACE FUNCTION, Persistent UDFs
	CREATE OR REPLACE PROCEDURE statement, Stored procedures
	CREATE OR REPLACE TABLE statement, Setting up destination table	creating an empty table, Empty table
	making tables irrecoverable, Restoring Deleted Records and Tables
	OPTIONS list, using, Options list

	CREATE TABLE AS SELECT statement, Data Management (DDL and DML), Step 5: Returning the query results
	CREATE TABLE statement, Copying into a New Table, Setting up destination table
	CreateDisposition and WriteDisposition, controlling load of pandas DataFrame, Loading a pandas DataFrame
	CROSS JOIN statement, CROSS JOIN, Using arrays for generating data
	cross-entropy loss measure in classification, Evaluation
	cross-region dataset copies, Cross-region dataset copy
	cross-selling of product groups, improving, What’s Being Clustered?
	CRUD operations	on REST API, mapped to HTTP verbs, Accessing BigQuery via the REST API
	supported on persistent storage, Query Essentials

	crypto-shredding, Crypto-shredding
	cryptography	BigQuery support for MD5 and SHA hashing algorithms, MD5 and SHA
	services provided for BigQuery by Google, Infrastructure Security

	CSV files, ETL, EL, and ELT, Loading from a Local Source	compressed, loading into BigQuery, Impact of compression and staging via Google Cloud Storage
	drawbacks of, for loading data into BigQuery, Loading Data Efficiently
	extraction format for table data using Google Cloud Client Library, Extracting data from a table
	loading into BigQuery, Loading from a Local Source
	querying external tables created from, Temporary table
	using Cloud Dataflow to read and write to BigQuery, Writing a Dataflow job

	curl utility	issuing GET request to BigQuery REST API URL, Table manipulation
	sending raw HTTP requests via, Step 1: HTTP POST
	using in measuring query time, Measuring Query Speed Using REST API

	CURRENT_TIMESTAMP function, Query History and Caching, Parsing and Formatting Timestamps
	custom roles, Custom roles
	customer information, security of, Infrastructure Security
	customer segmentation, What’s Being Clustered?
	customer targeting, Summary of model types, What’s Being Clustered?, Customer targeting
	Customer-Managed Encryption Keys (CMEK), Customer-Managed Encryption Keys, CMEK

D
	dashboards, tables accessed from, using BI Engine with, Accelerating queries with BI Engine
	data	correctness of, impact of time on, The Basics
	loading, Loading Data into BigQuery	(see also loading data into BigQuery)

	moving on-premises data, Moving On-Premises Data-Data Migration Methods
	slowly changing dimension, The Basics

	Data Catalog, searching for tables with specific label, Creating a table
	Data Definition Language (DDL), DDL-DML	changing options after table creation, Changing options
	creating empty tables, Empty table
	options list, Options list
	statements, Data Management (DDL and DML)	CREATE OR REPLACE TABLE, Setting up destination table

	support by BigQuery, How BigQuery Came About

	data exfiltration protection, Data Exfiltration Protection
	data locality, Data Locality
	data loss prevention, Data Loss Prevention-Data Loss Prevention
	data management (DDL and DML), Data Management (DDL and DML)-Data Management (DDL and DML)
	Data Manipulation Language (DML), DML, Caching the Results of Previous Queries, DML-MERGE statement	BigQuery and very-high-frequency DML updates, DML
	deleting rows with DELETE WHERE, Deleting rows
	INSERT SELECT, Insert SELECT
	INSERT VALUES, Insert VALUES
	INSERT VALUES with subquery SELECT, Insert VALUES with subquery SELECT
	MERGE statement, MERGE statement
	removing all transactions related to a single individual, DML
	statements, Data Management (DDL and DML)
	statements forcing a recluster, Reclustering
	support by BigQuery, How BigQuery Came About
	updating row values, Updating row values

	data marketplace, How BigQuery Came About
	data processing architectures, Data Processing Architectures-BigQuery: A Serverless, Distributed SQL Engine	MapReduce framework, MapReduce Framework
	relational database management system, Relational Database Management System

	data science tools, accessing BigQuery from, Accessing BigQuery from Data Science Tools-Incorporating BigQuery Data into Google Slides (in G Suite)	Cloud Dataflow, Cloud Dataflow-Cloud Dataflow
	incorporating BigQuery data into Google Slides, Incorporating BigQuery Data into Google Slides (in G Suite)-Incorporating BigQuery Data into Google Slides (in G Suite)
	JDBC/ODBC drivers, JDBC/ODBC drivers
	notebooks on Google Cloud Platform, Notebooks on Google Cloud Platform-Working with BigQuery, pandas, and Jupyter
	working with BigQuery from R, Working with BigQuery from R-Cloud Dataflow
	working with BigQuery, pandas, and Jupyter, Working with BigQuery, pandas, and Jupyter-Working with BigQuery, pandas, and Jupyter

	Data Sheets (BigQuery), Exploring BigQuery tables as a data sheet in Google Sheets
	data skew, Data skew
	data split, controlling in BigQuery ML, Controlling Data Split
	Data Studio, Integration with Google Cloud Platform	billing dashboard example, Visualizing the billing report
	exploring visualizations in, Powerful Analytics
	visualizing cluster attributes, Understanding the Clusters

	Data Transfer Service (BigQuery), Data Transfer Service-Cross-region dataset copy, Data Migration Methods	creating a transfer job, Create a transfer job
	cross-region dataset copy, Cross-region dataset copy
	data locality, Data locality
	scheduled queries, Scheduled queries
	setting up destination table, Setting up destination table

	data types, Data Types, Functions, and Operators-Summary	Booleans, working with, Working with BOOL-String Functions	casting and coercion, Casting and Coercion
	cleaner NULL-handling with COALESCE, Cleaner NULL-Handling with COALESCE
	in conditional expressions, Conditional Expressions
	logical operations, Logical Operations
	using COUNTIF to avoid casting Booleans, Using COUNTIF to Avoid Casting Booleans

	geographic, Geographic types
	Geography functions, Working with GIS Functions
	numeric types and functions, Numeric Types and Functions-Precise Decimal Calculations with NUMERIC	comparisons, Comparisons
	mathematical functions, Mathematical Functions
	precise decimal calculations with NUMERIC, Precise Decimal Calculations with NUMERIC
	SAFE functions, SAFE Functions
	standard-compliant floating-point division, Standard-Compliant Floating-Point Division

	strings and string functions, String Functions-Working with TIMESTAMP	internationalization of strings, Internationalization
	printing and parsing strings, Printing and Parsing
	regular expressions, Regular Expressions
	string manipulation functions, String Manipulation Functions
	summary of string functions, Summary of String Functions
	transformation functions, Transformation Functions

	strongly typed managed storage with BigQuery, Managed Storage
	supported by BigQuery, Data Types, Functions, and Operators
	TIMESTAMP, working with, Working with TIMESTAMP-Date, Time, and DateTime	arithmetic with timestamps, Arithmetic with Timestamps
	DATE, TIME, and DATETIME, Date, Time, and DateTime
	extracting calendar parts, Extracting Calendar Parts
	parsing and formatting timestamps, Parsing and Formatting Timestamps

	data warehouses	architectural differences of BigQuery on on-premises and cloud data warehouses, What Makes BigQuery Possible?
	BigQuery's evolution into, How BigQuery Came About

	data-driven decisions, making with k-means clustering, Data-Driven Decisions
	dataEditor role, Predefined roles
	DataFrames (see pandas)
	dataOwner role, Predefined roles
	datasets, Metadata	access to, on BigQuery, Loading from a Local Source
	checking if a dataset exists with bq ls, Checking whether a dataset exists
	copying using bq cp, Copying datasets
	creating in a different project, Creating a dataset in a different project
	creating to load into BigQuery, Loading from a Local Source
	creating using bq mk, Creating Datasets and Tables
	creating using Google Cloud Client Library, Creating a dataset
	cross-region dataset copy via Data Transfer Service, Cross-region dataset copy
	deleting a dataset using Google Cloud Client Library, Deleting a dataset
	deriving insights across, Deriving Insights Across Datasets
	determining those involved in query requests, Step 2: Routing
	information on, using Google Cloud Client Library, Dataset information
	joining Google Sheets data with dataset in BigQuery, Joining Sheets data with a large dataset in BigQuery
	manipulation through HTTP request to BigQuery REST API URL, Dataset manipulation
	manipulation via Google Cloud Client library for BigQuery, Dataset manipulation
	modifying attributes using Google Cloud Client Library, Modifying attributes of a dataset
	names of, Retrieving Rows by Using SELECT
	names, key components of, Retrieving Rows by Using SELECT
	permissions to access, Predefined roles
	primitive roles providing access to, Primitive roles
	providing for Identity and Access Management (IAM), Retrieving Rows by Using SELECT
	training dataset for regression model, creating, Creating a Training Dataset

	dataViewer role, Predefined roles, Resource
	DATE type, Date, Time, and DateTime, Summary	detection by AUTO partitioning mode, Loading and querying Hive partitions

	dates and time, working with timestamps, Working with TIMESTAMP-Date, Time, and DateTime
	DATETIME type, Data Types, Functions, and Operators, Date, Time, and DateTime, Summary
	Davies-Bouldin index, Hyperparameter tuning using scripting
	decision trees, Gradient-boosted trees
	Deep Learning Virtual Machine, Notebooks on Google Cloud Platform
	deep neural networks, Deep Neural Networks-Deep Neural Networks	classification with, dnn_classifier model, Training
	training a model, Deep Neural Networks
	using a smaller network, Deep Neural Networks

	DELETE statement, Data Management (DDL and DML), DML, DML	deleting rows in DML, Deleting rows

	deletions	deleting a dataset using Google Cloud Client Library, Deleting a dataset
	deleting a table or view from BigQuery, Data Management (DDL and DML)
	deleting a table or view from BigQuery using SQL, Data Management (DDL and DML)
	deleting a table using Google Cloud Client Library, Deleting a table
	deleting partitions, Partitioning
	HTTP DELETE request to BigQuery REST API URL, Dataset manipulation
	restoring deleted records and tables, Restoring Deleted Records and Tables

	denormalization, Denormalization, Joining with precomputed values	JOIN versus, JOIN versus denormalization

	DENSE_RANK function, Numbering functions
	descriptive analytics, powerful, performing with BigQuery, Powerful Analytics
	developing with BigQuery, Developing with BigQuery-Summary	accessing BigQuery from data science tools, Accessing BigQuery from Data Science Tools-Incorporating BigQuery Data into Google Slides (in G Suite)	JDBC/ODBC drivers, JDBC/ODBC drivers
	working with BigQuery from R, Working with BigQuery from R-Cloud Dataflow
	working with BigQuery, pandas, and Jupyter, Working with BigQuery, pandas, and Jupyter-Working with BigQuery, pandas, and Jupyter

	bash scripting with BigQuery, Bash Scripting with BigQuery-Summary
	developing programmatically, Developing Programmatically-Parameterized queries	accessing BigQuery via REST API, Accessing BigQuery via the REST API-Limitations
	using Google Cloud Client Library, Google Cloud Client Library-Parameterized queries

	dictionary encoding, Storage format: Capacitor
	disaster recovery, Durability, Backups, and Disaster Recovery
	disks	failures of, Disk failures
	failures of, avoiding loss of data, Physical storage: Colossus
	query shuffling and spilling to disk, Shuffle

	DISTINCT, finding unique values with, Finding Unique Values by Using DISTINCT
	division	/ operator, Numeric Types and Functions
	standard-compliant floating-point division, Standard-Compliant Floating-Point Division

	DNN (see deep neural networks)
	dnn_classifier model type, Training
	dnn_regressor model, Deep Neural Networks, Training hybrid recommendation model	difficulties of, Deep Neural Networks

	draining the zone, Zonal failures
	drains or failovers of compute clusters, Step 3: Job Server
	Dremel (SQL engine), How BigQuery Came About, Step 4: Query engine	cloud version of, How BigQuery Came About
	SQL dialect used by, Simple Queries

	Dremel query engine, Query Engine (Dremel)-Hash join query	architecture, Dremel Architecture-Query Execution	Query Masters, Query Master
	scheduler, Scheduler
	shuffle, Shuffle

	current architecture, Dremel X, Query Engine (Dremel)
	initial architecture, Query Engine (Dremel)
	query execution, Query Execution-Hash join query	broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN query
	hash join query, Hash join query-Hash join query
	scan-filter-aggregate query, Scan-filter-aggregate query-Stage 2
	scan-filter-count query, Scan-filter-count query-Stage 1

	DROP FUNCTION statement, Persistent UDFs
	DROP TABLE statement, Data Management (DDL and DML)
	--dry_run option, running parameterized queries with, Array and struct parameters
	dry runs for queries, Dry run
	dsinfo object, Dataset information	modifying, Modifying attributes of a dataset

	durability, Durability, Backups, and Disaster Recovery
	dynamic SQL queries, Building queries dynamically

E
	EL (extract and load), ETL, EL, and ELT
	ELT (extract, load, and transform), ETL, EL, and ELT
	empty tables, Empty table
	encoding (storage), Physical storage: Colossus	dictionary encoding, Storage format: Capacitor
	erasure encoding, Physical storage: Colossus
	replicated encoding, Physical storage: Colossus
	run-length encoding, Storage format: Capacitor

	encryption, Simplicity of Management, Privacy and Encryption-Customer-Managed Encryption Keys	Customer Managed Encryption Keys (CMEK), CMEK
	Customer-Managed Encryption Keys (CMEK), Customer-Managed Encryption Keys
	encrypting all sensitive data corresponding to a user, Crypto-shredding

	ENDS_WITH function, String Manipulation Functions
	entity extraction, Summary of model types
	envelope encryption, CMEK
	equality, not-equals, using != or <> operator, Comparisons
	erasure encoding, Storage Data, Physical storage: Colossus
	errors, inserting rows into a table, Inserting rows into a table
	etags, Updating a table’s schema
	ETL (extract, transform, and load)	manipulating strings in ETL pipelines, String Manipulation Functions
	using BigQuery, ETL, EL, and ELT
	using robust ETL pipeline and making decisions early, Copying into a New Table

	evaluating machine learning models	controlling data split with training, Controlling Data Split
	evaluation tab of web UI for classification model, Evaluation
	loss curve for classification model, Training
	matrix factorization model, Matrix Factorization
	regression model, Evaluating the model

	EXCEPT, using with SELECT, SELECT *, EXCEPT, REPLACE
	execution plans (see query plans)
	execution stages (queries), Scan-filter-count query
	EXISTS operator, Using arrays to store repeated fields
	expensive computations, reducing number of, Reducing the number of expensive computations
	experimenting with BigQuery, using sandbox, Estimating per-query cost
	expiration	cached tables expiring, Caching the Results of Previous Queries
	changing for a table after creating it, Changing options
	for partitions, Partitioned tables
	specifying for partitions, Partitioning, Partitioned tables
	specifying for tables, Loading from a Local Source, Data Management (DDL and DML), Creating Datasets and Tables, Creating a table, Options list
	system event logged when table or partition expires, Stackdriver monitoring and audit logging
	temporary tables holding query results, Query History and Caching

	explicit conversion, Casting and Coercion	(see also casting)

	exports of data from BigQuery	exporting Stackdriver logs, Exporting Stackdriver Logs-Exporting Stackdriver Logs
	extracting data from a table and exporting it to GCS, Extracting data from a table

	extensions to SQL in BigQuery supporting data analytics, Powerful Analytics
	extensions, invoking in Jupyter Notebook, Notebooks on Google Cloud Platform
	external data sources	how to use federated queries on, How to Use Federated Queries-Loading and querying Hive partitions
	interactive querying of data in Google Sheets, Interactive Exploration and Querying of Data in Google Sheets-Joining Sheets data with a large dataset in BigQuery
	recommendations for use, Internal versus external data sources
	SQL queries on data in Cloud Bigtable, SQL Queries on Data in Cloud Bigtable-Improving performance
	supported by BigQuery, Federated Queries and External Data Sources
	when to use with federated queries, When to Use Federated Queries and External Data Sources-Interactive Exploration and Querying of Data in Google Sheets

F
	failover processes, Step 3: Job Server
	failure handling, BigQuery and Failure Handling-Regional failures	disk failures, Disk failures
	machine failures, Machine failures
	regional failures, Regional failures
	zonal failures, Zonal failures

	FARM fingerprint algorithm, Fingerprint function
	feature engineering, Exploring the Dataset to Find Features
	features (in machine learning), Formulating a Machine Learning Problem	combining categorical features into AND comdition, Human insights and auxiliary data
	creating input features for hybrid recommendation model, Creating input features-Creating input features
	dayofweek feature in linear regression model, weights, Examining Model Weights
	finding in dataset for regression model, Exploring the Dataset to Find Features-Number of bicycles	day of week, Day of week
	impact of station, Impact of station
	number of bicycles, Number of bicycles

	for classification model, Training
	 regression model features, other ways to represent, Combining days of the week
	standardize_features option in k-means clustering, Carrying Out Clustering

	federated queries, ETL, EL, and ELT, Integration with Google Cloud Platform	and external data sources, Federated Queries and External Data Sources-Improving performance	how to use federated queries, How to Use Federated Queries-Loading and querying Hive partitions
	interactive explorations and querying of data in Google Sheets, Interactive Exploration and Querying of Data in Google Sheets-Joining Sheets data with a large dataset in BigQuery
	SQL queries on data in Cloud Bigtable, SQL Queries on Data in Cloud Bigtable-Improving performance
	when to use, When to Use Federated Queries and External Data Sources-Interactive Exploration and Querying of Data in Google Sheets

	file compression, Loading from a Local Source
	file loads, File Loads
	fingerprint function, Fingerprint function
	FIRST_VALUE function, Navigation functions
	FLOAT64 type, Data Types, Functions, and Operators, Summary	coercion of INT64 or NUMERIC to, Casting and Coercion
	decimal calculations and, Precise Decimal Calculations with NUMERIC

	floating-point numbers, standard-compliant floating-point division, Standard-Compliant Floating-Point Division
	folium package, plotting a map with, Working with BigQuery, pandas, and Jupyter
	FORMAT function, Printing and Parsing
	FORMAT_DATE function, Printing and Parsing
	FORMAT_TIMESTAMP function, Printing and Parsing, Parsing and Formatting Timestamps
	FROM clause	correlated subqueries in, Correlated subquery
	dataset named in, Loading Data into BigQuery
	in SELECT statement, WHERE clause and, Filtering with WHERE
	including parameters so constant can be used in a query, Defining constants
	UNNEST function in, Using arrays to store repeated fields

	from_items, The JOIN Explained
	functions, Numeric Types and Functions	advanced, Advanced Functions-Summary	BigQuery Geographic Information Systems, BigQuery Geographic Information Systems-Geometry transformations and aggregations
	hash algorithms, Hash Algorithms-Summary
	statistical functions, Useful Statistical Functions-Correlation

	mathematical, Mathematical Functions
	SAFE, SAFE Functions
	standard-compliant floating-point division, Standard-Compliant Floating-Point Division
	types of, summary, Numeric Types and Functions

G
	G Suite, Interactive Exploration and Querying of Data in Google Sheets, Incorporating BigQuery Data into Google Slides (in G Suite)	(see also Google Slides)

	Gamma distribution fit, computing parameters of, Cloud Dataflow
	GARBAGE, marking old storage sets as, Storage sets, DML
	gcloud command-line tool, Notebooks on Google Cloud Platform	gcloud auth command, Creating a dataset in a different project

	GCP (see Google Cloud Platform)
	GCP Cloud Console (see Cloud Console)
	GCS (see Google Cloud Storage)
	generational (storage system), Storage optimization
	Geo Viz (BigQuery), Geometry transformations and aggregations
	Geographic Information Systems (GIS), BigQuery Geographic Information Systems-Geometry transformations and aggregations	function performing GIS measures, GIS Measures
	functions for creating polygons, Creating Polygons
	functions performing geometry transformations and aggregations, Geometry transformations and aggregations
	GIS functions operating on geographic types, Geographic types
	predicate functions, GIS predicate functions
	ST_GeoHash function, Human insights and auxiliary data

	geographic types, Geographic types
	GEOGRAPHY type, Data Types, Functions, and Operators, Working with GIS Functions, Summary	storing data as, Storing data as geography types-Storing data as geography types

	geohash, Creating Polygons
	GeoJSON geospatial data, Geographic types	converting geographies to/from strings in, Geographic types

	GET requests (HTTP), Table manipulation
	GitHub repository for this book, Table manipulation	Google Apps Script in, Incorporating BigQuery Data into Google Slides (in G Suite)

	Global Positioning System (GPS), Working with GIS Functions
	Google Apps Script, Incorporating BigQuery Data into Google Slides (in G Suite)
	Google BigQuery (see BigQuery)
	Google Cloud Client Library, Developing Programmatically, Google Cloud Client Library-Parameterized queries, Notebooks on Google Cloud Platform	browsing rows of a table, Browsing the rows of a table
	copying a table, Copying a table
	creating a dataset, Creating a dataset
	creating an empty table, Creating an empty table
	creating an empty table with schema, Creating an empty table with schema
	dataset information from dsinfo object, Dataset information
	dataset manipulation, Dataset manipulation
	deleting a dataset, Deleting a dataset
	deleting a table, Deleting a table
	extracting data from a table, Extracting data from a table
	inserting rows into a table, Inserting rows into a table
	installing BigQuery client library, Google Cloud Client Library
	instantiating a Client, Google Cloud Client Library
	loading a BigQuery table directly from Google Cloud URI, Loading from a URI
	loading a BigQuery table from a local file, Loading from a local file
	loading a pandas DataFrame, Loading a pandas DataFrame
	modifying attributes of a dataset, Modifying attributes of a dataset
	querying with, Querying-Parameterized queries	creating a pandas DataFrame, Creating a pandas DataFrame
	dry run before executing the query, Dry run
	executing the query, Executing the query

	table management with, Table management
	updating a table's schema, Updating a table’s schema

	Google Cloud Data Loss Prevention API, Integration with Google Cloud Platform
	Google Cloud Identity and Access Management (see Identity and Access Management)
	Google Cloud Platform (GCP)	BigQuery interacting with, using bq tool, Loading from a Local Source
	custom machine learning models in, Custom Machine Learning Models on GCP-Predicting with TensorFlow models
	Google Cloud Storage or Cloud Pub/Sub, Minimizing Network Overhead
	integration of BigQuery with, Integration with Google Cloud Platform
	notebooks on, Notebooks on Google Cloud Platform-Working with BigQuery, pandas, and Jupyter	Jupyter Magics, Jupyter Magics
	running a parameterized query, Running a parameterized query
	saving query results to pandas, Saving query results to pandas

	Pricing Calculator, Estimating per-query cost
	security features provided by, Administering and Securing BigQuery

	Google Cloud Software Development Kit (SDK), Table manipulation, Bash Scripting with BigQuery
	Google Cloud Storage (GCS), MapReduce Framework, Minimizing Network Overhead	exporting BigQuery data to TensorFlow records on, Apache Beam/Cloud Dataflow
	exporting data from a table to file in GCS, Extracting data from a table
	federated queries extracting data from, ETL, EL, and ELT
	loading Hive partitions on, Loading and querying Hive partitions
	loading on-premises data into, Data Migration Methods
	staging files before loading into BigQuery, Impact of compression and staging via Google Cloud Storage
	transferring data from, Create a transfer job

	Google File System (GFS), Physical storage: Colossus
	 Google Front-End (GFE) servers, Step 2: Routing
	Google Sheets, When to Use Federated Queries and External Data Sources, Interactive Exploration and Querying of Data in Google Sheets	joining Sheets data with large dataset in BigQuery, Joining Sheets data with a large dataset in BigQuery
	loading data into BigQuery and querying it, Loading Google Sheets data into BigQuery
	populating a spreadsheet with data from BigQuery, Populating a Google Sheets spreadsheet with data from BigQuery	exploring BigQuery tables as data sheet, Exploring BigQuery tables as a data sheet in Google Sheets
	exploring BigQuery tables using Sheets, Exploring BigQuery tables using Sheets

	storing BigQuery query results in spreadsheet, Incorporating BigQuery Data into Google Slides (in G Suite)

	Google Slides, incorporating BigQuery data into, Incorporating BigQuery Data into Google Slides (in G Suite)-Incorporating BigQuery Data into Google Slides (in G Suite)
	gradient-boosted trees, Gradient-boosted trees
	Gradle build tool, installing, Measuring Query Speed Using BigQuery Workload Tester
	Gray, Jim, How BigQuery Came About
	GROUP BY	computing aggregates with, Computing Aggregates by Using GROUP BY
	using instead of scripts, A sequence of statements
	using with ARRAY_AGG function, Data skew

	gsutil cp command, Impact of compression and staging via Google Cloud Storage, Data Migration Methods
	gzip file compression, Loading from a Local Source

H
	Hadoop, MapReduce Framework
	hash algorithms, Hash Algorithms-Summary	fingerprint function, Fingerprint function
	generating UUIDs, UUID
	MD5 and SHA, MD5 and SHA
	random number generator, Random number generator

	hash join query, Hash join query-Hash join query
	hash joins, Hash join query
	hashes	about, Stage 0
	BY HASH directive in scan-filter-aggregate query, Stage 0

	HAVING clause, Anatomy of a simple script	filtering grouped items with, Filtering Grouped Items by Using HAVING

	Heartbleed vulnerability, Infrastructure Security
	heredoc syntax in Bash, Querying
	hidden_units, Deep Neural Networks
	history of queries, Query History and Caching
	Hive partitions, loading and querying, Loading and querying Hive partitions
	HLL functions, HLL functions	HLL_COUNT.EXTRACT, HLL functions
	HLL_COUNT.INIT, HLL functions, HLL functions
	HLL_COUNT.MERGE, HLL functions
	HLL_COUNT.MERGE_PARTIAL, HLL functions

	HTTP requests	batching requests ot BigQuery REST API, Batching multiple requests
	BigQuery REST API documentation specifying details of, Dataset manipulation
	DELETE request to BigQuery REST API URL, Dataset manipulation, Table manipulation
	GET request to BigQuery REST API URL, Table manipulation
	GET, POST, PUT, PATCH, and DELETE methods, Dataset manipulation
	getting status of jobId using REST API with GET request, Limitations
	POST request for a query, Step 1: HTTP POST
	POST request to BigQuery REST API URL with JSON request embedded, Querying
	to BigQuery REST API, Accessing BigQuery via the REST API

	HTTPS, Accessing BigQuery via the REST API
	human insights in regression model, Human insights and auxiliary data
	HyperLogLog++ (HLL++) algorithm, HLL functions
	hyperparameter tuning, Hyperparameter Tuning-Hyperparameter tuning using AI Platform	for deep neural networks, Deep Neural Networks
	using AI Platform, Hyperparameter tuning using AI Platform
	using Python, Hyperparameter tuning in Python
	using scripting, Hyperparameter tuning using scripting

I
	I/O, minimizing for queries, Minimizing I/O-Reducing the number of expensive computations
	Identity and Access Management (IAM), Simplicity of Management, Administering and Securing BigQuery, Identity and Access Management-Resource	provided by datasets, Retrieving Rows by Using SELECT
	resources, Resource
	roles, Role-Custom roles	custom, Custom roles
	predefined, Predefined roles
	primitive, Primitive roles

	IEEE_Divide function, Standard-Compliant Floating-Point Division
	IF conditions, Looping
	IF function, Conditional Expressions
	IF statement, using on Booleans, Using COUNTIF to Avoid Casting Booleans
	IFNULL function, Cleaner NULL-Handling with COALESCE
	image captioning, Summary of model types
	image classification, Summary of model types
	implicit conversion, Casting and Coercion	(see also coercion)

	in-memory filesystem, Worker Shard	(see also Colossus File System)

	increasing query speed, Increasing Query Speed-Optimizing How Data Is Stored and Accessed	caching results of previous queries, Caching the Results of Previous Queries-Accelerating queries with BI Engine	accelerating queries with BI Engine, Accelerating queries with BI Engine

	minimizing I/O, Minimizing I/O-Reducing the number of expensive computations	being purposeful in SELECT, Be purposeful in SELECT
	reducing data being read, Reducing data being read
	reducing number of expensive computations, Reducing the number of expensive computations

	performing efficient joins, Performing Efficient Joins-JOIN versus denormalization	avoiding self-joins of large tables, Avoiding self-joins of large tables
	denormalization, Denormalization
	JOIN versus denormalization, JOIN versus denormalization
	joining with precomputed values, Joining with precomputed values
	reducing data being joined, Reducing the data being joined
	using window function instead of self-join, Using a window function instead of self-join

	using approximate aggregation functions, Using Approximate Aggregation Functions-Optimizing How Data Is Stored and Accessed

	indexes (array), Using arrays for generating data
	indexing, not needed in BigQuery, Simplicity of Management
	infinite loops, avoiding with SQL, How BigQuery Came About
	INFORMATION_SCHEMA view, Table manipulation, Obtaining table properties, Building queries dynamically	associated with a project, finding most expensive queries, Finding the most expensive queries

	infrastructure provisioning, not needed with BigQuery, Simplicity of Management
	INNER JOIN statement, INNER JOIN, CROSS JOIN	INNER JOIN EACH WITH ALL, Broadcast JOIN query
	INNER JOIN EACH WITH EACH, Hash join query
	summary of, OUTER JOIN

	INSERT SELECT statement, Insert SELECT
	INSERT statement, Data Management (DDL and DML), Step 5: Returning the query results, DML
	INSERT VALUES statement, Data Management (DDL and DML), Insert VALUES	with SELECT subquery, Insert VALUES with subquery SELECT

	Institute of Electrical and Electronics Engineers (IEEE), Standard-Compliant Floating-Point Division
	INT64 type, Data Types, Functions, and Operators, Summary	converting (coercing) to FLOAT64 or NUMERIC, Casting and Coercion
	decimal calculations and, Precise Decimal Calculations with NUMERIC
	returned by fingerprint function, Fingerprint function

	INTEGER type, detection by AUTO partitioning mode, Loading and querying Hive partitions
	internationalization of strings, Internationalization
	intersection of geography types, Geometry transformations and aggregations
	IS NOT NULL operator, Finding Unique Values by Using DISTINCT
	IS NULL operator, Finding Unique Values by Using DISTINCT
	IS operator	using in comparing against built-in constants, Logical Operations
	using to check where value is NULL, Logical Operations

	isolation between jobs, Simplicity of Management

J
	Java Database Connectivity (JDBC), JDBC/ODBC drivers
	JavaScript	tensorflow.js, Exporting to TensorFlow
	user-defined functions, Optimizing user-defined functions, JavaScript UDFs-JavaScript UDFs

	JDBC/ODBC drivers, JDBC/ODBC drivers, Step 5: Returning the query results
	job management, Job Management
	job priority, BATCH, Batch Queries
	job servers, Step 3: Job Server	upgrades to, BigQuery Upgrades

	JobConfig flags, Loading from a URI
	jobIds, Limitations, Step 5: Returning the query results
	jobUser role, Predefined roles, Resource
	job_config, Parameterized queries
	join+ stage	of broadcast JOIN treaty, Broadcast JOIN query
	of hash join query, Hash join query

	joins, Joining Tables-Saving and Sharing	broadcast and hash, Broadcast JOIN query
	broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN query
	complex, support by BigQuery, Powerful Analytics
	CROSS JOIN, CROSS JOIN
	for cases seeming to require a script, A sequence of statements
	hash join query, Hash join query-Hash join query
	INNER JOIN, INNER JOIN
	JOIN statement, The JOIN Explained	GIS predicate functions in, GIS predicate functions
	how it works, The JOIN Explained

	joining user table and machine learning weights, Creating input features
	OUTER JOIN, OUTER JOIN
	performing efficient joins, Performing Efficient Joins-JOIN versus denormalization	avoiding self-joins of large tables, Avoiding self-joins of large tables
	denormalization, Denormalization
	JOIN versus denormalization, JOIN versus denormalization
	reducing data being joined, Reducing the data being joined
	using precomputed values, Joining with precomputed values
	using window function instead of self-join, Using a window function instead of self-join

	queries doing JOIN operations, Query Engine (Dremel)
	summary of types of joins and their output, OUTER JOIN

	JSON, ETL, EL, and ELT	arrays, Creating Arrays by Using ARRAY_AGG
	compressed files, loading into BigQuery, Impact of compression and staging via Google Cloud Storage
	converting arrays to JSON strings, Array functions
	creating JSON strings for dataset schema, Specifying a Schema
	creating table definition of data stored in newline-delimited JSON for Hive partition, Loading and querying Hive partitions
	GeoJSON, Geographic types	converting geographies to/from strings in, Geographic types

	JSON request in body of HTTP POST sent to BigQuery REST API URL, Querying
	JSON/REST interface, Accessing BigQuery via the REST API
	loading files into BigQuery, Loading from a Local Source
	newline-delimited files, extract format using Google Cloud Client Library, Extracting data from a table
	response from HTTP POST request to BigQuery REST API URL, Querying
	transformation of JSON HTTP request to Protobufs, Step 2: Routing
	writing rows to insert into tables as newline-delimited JSON, Loading and inserting data

	Jupiter Networking, Storage and Networking Infrastructure
	Jupyter	creating Python 3 notebook, Notebooks on Google Cloud Platform
	Magics (BigQuery extensions), Jupyter Magics	running a parameterized query, Running a parameterized query
	using with BigQuery Storage API, Bulk reads using BigQuery Storage API

	using R from Jupyter notebook, Working with BigQuery from R	Jupyter Magics for R, Working with BigQuery from R

	working with BigQuery and pandas, Working with BigQuery, pandas, and Jupyter-Working with BigQuery, pandas, and Jupyter

	Jupyter Notebooks, Geometry transformations and aggregations	lines preceded by ! or %, Notebooks on Google Cloud Platform
	lines preceded by !, running using command-line shell, Notebooks on Google Cloud Platform

K
	k-means clustering, k-Means Clustering-Data-Driven Decisions	carrying out clustering, Carrying Out Clustering
	clustering bicycle stations, Clustering Bicycle Stations
	determining what's being clustered, What’s Being Clustered?
	making data driven decisions with, Data-Driven Decisions
	understanding the clusters, Understanding the Clusters

	kmeans model type, k-Means Clustering
	Knuth, Donald, Accessing BigQuery from Data Science Tools, Principles of Performance

L
	L1 and L2 regularization, Regularization
	labels, Labels and tags	applying to GCP resources for cost breakdown, Labels
	empty (tags), Labels and tags
	in machine learning, Formulating a Machine Learning Problem, Clustering	choosing for regression model, Choose the Label
	for classification model, Training
	labels for regression model, Training and Evaluating the Model

	searching for datasets or tables by, Labels and tags

	LAG function, Navigation functions
	LAST_VALUE function, Navigation functions
	layers in deep neural networks, Deep Neural Networks
	LEAD function, Navigation functions
	LEFT JOIN statement, Using arrays for generating data
	LENGTH function, String Functions
	life cycle management on staging buckets, Setting up life cycle management on staging buckets
	LIKE operator, SELECT *, EXCEPT, REPLACE	named parameters used within, Named parameters

	LIME (model explainability package), Examining Model Weights
	LIMIT clause, Approximate top	adding to GROUP BY, Data skew
	using with SELECT, Retrieving Rows by Using SELECT
	using with SELECT *, Be purposeful in SELECT

	linear regression models	examining model weights, Examining Model Weights-More-Complex Regression Models
	linear_reg model type, Training and Evaluating the Model

	lines, Geographic types
	literate programming, Accessing BigQuery from Data Science Tools
	loading data into BigQuery, Loading Data into BigQuery-Summary	copying into a new table, Copying into a New Table
	data management (DDL and DML), Data Management (DDL and DML)-Data Management (DDL and DML)
	efficiently, Loading Data Efficiently-Price and quota	impact of compression and staging via GCS, Impact of compression and staging via Google Cloud Storage

	federated queries and external data sources, Federated Queries and External Data Sources-Improving performance	how to use federated queries, Federated Queries and External Data Sources-Loading and querying Hive partitions
	interactive explorations and querying of data in Google Sheets, Interactive Exploration and Querying of Data in Google Sheets-Joining Sheets data with a large dataset in BigQuery
	SQL queries on data in Cloud Bigtable, SQL Queries on Data in Cloud Bigtable-Improving performance
	when to use, When to Use Federated Queries and External Data Sources-Interactive Exploration and Querying of Data in Google Sheets

	loading data into destination table using bq load, Loading and inserting data
	from a local source, Loading from a Local Source-Loading from a Local Source
	moving on-premises data, Moving On-Premises Data-Data Migration Methods
	specifying a schema, Specifying a Schema-Specifying a Schema
	transfers and exports, Transfers and Exports-Using the Streaming API directly	BigQuery Data Transfer Service, Data Transfer Service-Cross-region dataset copy
	exporting Stackdriver logs, Exporting Stackdriver Logs
	using Cloud Dataflow to read/write from BigQuery, Using Cloud Dataflow to Read/Write from BigQuery-Using the Streaming API directly

	using Google Cloud Client Library	loading a pandas DataFrame, Loading a pandas DataFrame
	loading from a Google Cloud URI, Loading from a URI
	loading from a local file, Loading from a local file

	localities for data, Data locality
	localities for datasets, Creating a dataset, Creating Datasets and Tables
	locations	choices for datasets created for BigQuery, Loading from a Local Source
	geographic	adhering to privacy policies with, GIS Measures
	machine learning and, Creating Polygons

	location-aware queries, Powerful Analytics

	LOG function, prefixing with SAFE, SAFE Functions
	logical operations, Boolean AND, OR, and NOT, Logical Operations
	logistic regression, Examining Model Weights	logistic_reg model type, Training

	logs, ELT in SQL for experimentation	(see also Stackdriver)
	exporting Stackdriver logs, Exporting Stackdriver Logs-Exporting Stackdriver Logs

	longitude and latitude, Geographic types
	LOOP statement, Looping
	looping, Looping
	LOWER function, String Functions
	LPAD function, Transformation Functions
	LTRIM function, Transformation Functions

M
	machine failures, Machine failures
	machine learning, Machine Learning in BigQuery	AutoML Tables and AutoML Text, creating models from data in BigQuery tables, Integration with Google Cloud Platform
	building a classification model, Building a Classification Model-Choosing the Threshold	choosing the threshold, Choosing the Threshold
	evaluating the model, Evaluation
	prediction with the model, Prediction
	training the model, Training

	building a regression model, Building a Regression Model-Human insights and auxiliary data	choosing the label, Choose the Label
	creating a training dataset, Creating a Training Dataset
	examining model weights, Examining Model Weights-More-Complex Regression Models
	exploring the dataset to find features, Exploring the Dataset to Find Features-Number of bicycles
	more complex regression models, More-Complex Regression Models-Human insights and auxiliary data
	predicting with the model, Predicting with the Model-Generating batch predictions
	training and evaluating the model, Training and Evaluating the Model-Bucketizing the hour of day

	creating learning models and carrying out batch predictions with BigQuery, Powerful Analytics
	custom models in GCP, Custom Machine Learning Models on GCP-Predicting with TensorFlow models	AutoML, AutoML
	hyperparameter tuning, Hyperparameter Tuning-Hyperparameter tuning using AI Platform
	support for TensorFlow, Support for TensorFlow-Predicting with TensorFlow models

	customizing BigQuery ML, Customizing BigQuery ML-Regularization	balancing classes, Balancing Classes
	controlling data split, Controlling Data Split
	regularization, Regularization

	formulating a problem, Formulating a Machine Learning Problem-Types of Machine Learning Problems
	geographic locations in, Creating Polygons
	Google Cloud Platform APIs integrated with BigQuery, Integration with Google Cloud Platform
	in Google Sheets, automatic chart creation, Exploring BigQuery tables using Sheets
	k-means clustering, k-Means Clustering-Data-Driven Decisions	carrying out clustering, Carrying Out Clustering
	clustering bicycle stations, Clustering Bicycle Stations
	determining what's being clustered, What’s Being Clustered?
	making data-driven decisions, Data-Driven Decisions
	understanding the clusters, Understanding the Clusters

	recommender systems, Recommender Systems-Training hybrid recommendation model	incorporating user and movie information, Incorporating User and Movie Information-Training hybrid recommendation model
	making recommendations, Making Recommendations-Batch predictions for all users and movies
	matrix factorization, Matrix Factorization-Matrix Factorization
	MovieLens dataset, using, The MovieLens Dataset

	supervised, Machine Learning in BigQuery
	types of problems, Types of Machine Learning Problems-Building a Regression Model	classification, Classification
	clustering, Clustering
	recommender systems, Recommender
	regression, Regression
	summary of model types, Summary of model types
	unstructured data, Unstructured data

	using BigQuery, AutoML

	magic numbers, Defining constants
	Magics, invoking in Jupyter Notebook, Notebooks on Google Cloud Platform
	magnitude or sign of model weights, Examining Model Weights
	managed storage, Managed Storage
	management, simplicity of, using BigQuery, Simplicity of Management
	MapReduce framework, MapReduce Framework
	maps, interactive, creating with folium, Working with BigQuery, pandas, and Jupyter
	MATCHED, NOT MATCHED BY SOURCETARGET, NOT MATCHED BY, MERGE statement
	materialized views	creating from queries using bq mk, Creating views
	storing query results in, Caching intermediate results

	mathematical functions, Mathematical Functions	SAFE prefix, SAFE Functions

	matrix factorization, Matrix Factorization-Matrix Factorization
	matrix_factorization model, What’s Being Clustered?, Matrix Factorization
	MAX function, Navigation functions
	--maximum_bytes_billed option, Estimating per-query cost
	MD5 hashing algorithm, MD5 and SHA
	measuring and troubleshooting queries, Measuring and Troubleshooting-Visualizing the query plan information	measuring query speed using BigQuery Workload Tester, Measuring Query Speed Using BigQuery Workload Tester-Measuring Query Speed Using BigQuery Workload Tester
	measuring query speed using REST API, Measuring Query Speed Using REST API
	reading query plan information, Reading Query Plan Information-Visualizing the query plan information
	troubleshooting workloads using Stackdriver, Troubleshooting Workloads Using Stackdriver-Troubleshooting Workloads Using Stackdriver

	MEDIAN function, user-defined, Public UDFs
	memory	overwhelming memory of a worker, Data skew
	reserving for caching tables by setting up BI Engine reservations, Accelerating queries with BI Engine

	MERGE statement, Data Management (DDL and DML), DML, Reclustering, Deleting rows, MERGE statement
	metadata, Metadata-Meta-File	clustering, Clustering	performance optimizations with clustered tables, Performance optimizations with clustered tables
	reclustering, Reclustering

	DML (Data Manipulation Language), DML
	meta-file, Query Master, Meta-File
	metadataViewer role, Predefined roles
	partitioning, Partitioning
	performance optimizations with clustered tables, Performance optimizations with clustered tables
	storage optimization, Storage optimization
	storage sets, Storage sets
	table, Table Metadata-Time travel	labels and tags, Labels and tags
	time travel, Time travel
	using to build queries dynamically, Building queries dynamically

	time travel, Time travel

	migration of data, moving on-premises data to Google Cloud Storage, Data Migration Methods
	ML.BUCKETIZE function, Bucketizing the hour of day
	ML.EVALUATE function, Evaluating the model
	ML.FEATURE_CROSS function, Human insights and auxiliary data
	ML.FEATURE_INFO function, Gradient-boosted trees
	ML.PREDICT function, Predicting with the Model, Prediction	finding clusters with, Understanding the Clusters
	making recommendations in recommender system, Making Recommendations
	passing desired threshold to, for binary classification models, Choosing the Threshold

	ML.RECOMMEND function, Batch predictions for all users and movies
	ML.WEIGHTS function, Examining Model Weights, Obtaining user and product factors
	models (machine learning)	building a classification model, Building a Classification Model-Choosing the Threshold
	features, Formulating a Machine Learning Problem
	more complex regression models, More-Complex Regression Models-Human insights and auxiliary data
	overfitting, Regularization
	summary of model types, Summary of model types

	monitoring resources using Stackdriver, Stackdriver monitoring and audit logging
	multiclass classification problems, Classification, Summary of model types
	multipart/mixed content type, Batching multiple requests
	multiregions, Zones, Regions, and Multiregions, Regional failures
	multitenant queries, Simplicity of Management
	MySQL, Relational Database Management System	using Cloud Dataflow template to load directly from MySQL, Using a Dataflow template to load directly from MySQL

N
	named parameters, Named parameters	named timestamp parameters, Named timestamp parameters

	NaN (Not-a-Number), Standard-Compliant Floating-Point Division
	Natural Language API, Unstructured data
	navigation functions, Navigation functions
	Nearline Storage, Setting up life cycle management on staging buckets
	nested fields, Storing data as arrays of structs	nested, repeated fields, Storing data as arrays of structs

	networking	BigQuery's reliance of Jupiter Networking, Storage and Networking Infrastructure
	minimizing network overhead, Minimizing Network Overhead-Choosing an Efficient Storage Format	accepting compressed, partial responses, Compressed, partial responses
	bulk reads using BigQuery Storage API, Bulk reads using BigQuery Storage API

	security of Google's global network, Infrastructure Security

	nodes in deep neural networks, Deep Neural Networks
	nondeterministic behavior, queries exhibiting, Caching the Results of Previous Queries
	NoSQL	Cloud Bigtable NoSQL database service, SQL Queries on Data in Cloud Bigtable
	queries on data in Cloud Bigtable, NoSQL Queries based on a row-key prefix

	NOT keyword, Filtering with WHERE
	NOT MATCHED BY TARGET or NOT MATCHED BY SOURCE, MERGE statement
	Not-a-Number (see NaN)
	notebooks, Accessing BigQuery from Data Science Tools	on Google Cloud Platform, Notebooks on Google Cloud Platform-Working with BigQuery, pandas, and Jupyter	Jupyter Magics, Jupyter Magics
	running a parameterized query, Running a parameterized query
	saving query results to pandas, Saving query results to pandas

	using R from Jupyter notebook, Working with BigQuery from R

	NP-hard problems, Storage format: Capacitor
	NTH_VALUE function, Navigation functions
	NULL values	cleaner handling with COALESCE, Cleaner NULL-Handling with COALESCE
	CROSS JOIN excluding rows with empty or NULL arrays, Using arrays for generating data
	filtering for in WHERE clause, Finding Unique Values by Using DISTINCT
	in comparisons, Comparisons, Logical Operations
	in dataset CSV filed loaded into BigQuery, Loading from a Local Source
	making scalar functions return, SAFE Functions
	NULL elements in arrays, Creating Arrays by Using ARRAY_AGG
	replacing privacy-suppressed values with, Specifying a Schema
	returning NULL from casting, not an error, Casting and Coercion

	numbering functions, Numbering functions
	NUMERIC type, Data Types, Functions, and Operators, Summary	coercions, Casting and Coercion
	precise decimal calculations with, Precise Decimal Calculations with NUMERIC

	numeric types	and functions used with, Numeric Types and Functions-Precise Decimal Calculations with NUMERIC	comparisons, Comparisons
	mathematical functions, Mathematical Functions
	precise decimal calculations with NUMERIC, Precise Decimal Calculations with NUMERIC
	SAFE functions, SAFE Functions
	standard-compliant floating-point division, Standard-Compliant Floating-Point Division
	types of functions, summary, Numeric Types and Functions

	numeric_weights, Examining Model Weights
	num_clusters option, Carrying Out Clustering
	num_factors option, Matrix Factorization

O
	 OAuth2 tokens, Step 1: HTTP POST
	objects (BigQuery)	listing with bq ls and appropriate options, BigQuery Objects
	showing details with bq show, Showing details
	updating details with bq update, Updating

	OFFSET function, Using arrays for generating data	retrieving first array item, Working with Arrays

	ogr2ogr tool, converting Shapefiles to GeoJSON, Geographic types
	on-demand pricing, Controlling Cost
	online transaction processing (OLTP) databases, relational, Relational Database Management System	benefits and drawbacks, Relational Database Management System

	Open Database Connectivity (ODBC), JDBC/ODBC drivers
	operators	<, <=, >, >=, and != (or <>) comparison operators, Comparisons

	optimization, Optimizing Performance and Cost	(see also performance and cost, optimizing)
	premature, Principles of Performance

	Optimized Row Columnar (ORC) files, Loading Data Efficiently, Storage format: Capacitor	loading and querying, Loading and querying Parquet and ORC

	OPTIONS list	changing options after table creation, Changing options
	customizing when creating machine learning models, Customizing BigQuery ML-Regularization
	label column and model type for regression model, Training and Evaluating the Model
	using at table creation, Options list

	OR keyword, Filtering with WHERE
	ORDER BY	adding a LIMIT to, Data skew
	using to control row order in result set, Sorting with ORDER BY

	ordering, preserving using arrays, Using arrays to preserve ordering
	ORDINAL indexing of arrays, Using arrays for generating data
	OUTER JOIN statement, summary of, OUTER JOIN
	OVER clause, Aggregate analytic functions, Navigation functions	adding PARTITION BY to, Aggregate analytic functions

	overfitting, Training	avoiding by using regularization, Regularization
	decision trees and, Gradient-boosted trees
	defined, Regularization
	reducing in matrix factorization model, Matrix Factorization

P
	pandas	creating a DataFrame to hold query results, Creating a pandas DataFrame
	loading a DataFrame into BigQuery table, Loading a pandas DataFrame
	reading BigQuery table into in-memory DataFrame, Using pandas
	saving query results from Jupyter notebook on GCP to pandas DataFrame, Saving query results to pandas
	working with BigQuery and Jupyter, Working with BigQuery, pandas, and Jupyter-Working with BigQuery, pandas, and Jupyter

	parallelization of query execution in BigQuery, Simplicity of Management
	parameterized queries, Parameterized queries, Parameterized Queries-Array and struct parameters	array and struct parameters, Array and struct parameters
	named parameters, Named parameters
	named timestamp parameters, Named timestamp parameters
	parameters added to scheduled queries when invoked, Named timestamp parameters
	positional parameters, Positional parameters
	running from Jupyter notebook on GCP, Running a parameterized query

	Parquet files, Storage format: Capacitor	benefits and drawbacks of, Loading Data Efficiently
	loading and querying, Loading and querying Parquet and ORC

	PARSE_TIMESTAMP function, Parsing and Formatting Timestamps
	parsing strings, Printing and Parsing
	PARTITION BY, Aggregate analytic functions
	partitioning, Partitioning	clustering by the partitioning column, Clustering by the partitioning column
	clustering versus, Reclustering, Reclustering
	partitioning column in a query, Insert SELECT
	partitioning tables to reduce scan size, Partitioning Tables to Reduce Scan Size-Partitioned tables	antipattern, table suffixes and wildcards, Antipattern: Table suffixes and wildcards
	partition filters, BigQuery runtime statically determining, Partitioned tables
	partitioned tables, Partitioned tables-Partitioned tables

	partitioning mode, specifying for bq load, Loading and querying Hive partitions
	partitions, Partitioning	expiration time for, Partitioned tables
	partition ID, storage sets marked with, Partitioning

	PATTERN variable, Anatomy of a simple script
	Pearson correlation coefficient, Number of bicycles
	Pending state, Storage sets
	per-query costs, Controlling Cost	estimating, Estimating per-query cost

	performance and cost, optimizing, Optimizing Performance and Cost-Checklist	checklist for performance improvements, Checklist
	controlling cost, Controlling Cost-Finding the most expensive queries
	increasing query speed, Increasing Query Speed-Optimizing How Data Is Stored and Accessed	avoiding overwhelming a worker, Avoiding Overwhelming a Worker-Optimizing user-defined functions
	caching results of previous queries, Caching the Results of Previous Queries-Accelerating queries with BI Engine
	minimizing I/O, Minimizing I/O-Reducing the number of expensive computations
	performing efficient joins, Performing Efficient Joins-JOIN versus denormalization

	key drivers of performance, Key Drivers of Performance
	measuring and troubleshooting query performance, Measuring and Troubleshooting-Visualizing the query plan information	measuring speed using BigQuery Workload Tester, Measuring Query Speed Using BigQuery Workload Tester-Measuring Query Speed Using BigQuery Workload Tester
	measuring speed using REST API, Measuring Query Speed Using REST API
	reading query plan information, Reading Query Plan Information-Visualizing the query plan information
	troubleshooting workloads using Stackdriver, Troubleshooting Workloads Using Stackdriver-Troubleshooting Workloads Using Stackdriver

	optimizing how data is stored and accessed, Optimizing How Data Is Stored and Accessed-Side benefits of clustering	choosing efficient storage format, Choosing an Efficient Storage Format-Storing data as geography types
	clustering tables based on high-cardinality keys, Clustering Tables Based on High-Cardinality Keys
	minimizing network overhead, Minimizing Network Overhead-Choosing an Efficient Storage Format
	partitioning tables to reduce scan size, Partitioning Tables to Reduce Scan Size-Partitioned tables

	time-insensitive use cases, Time-Insensitive Use Cases-File Loads	batch queries, Batch Queries
	file loads, File Loads

	permissions, Security and Compliance	(see also Identity and Access Management)
	for access to user-defined functions, Persistent UDFs

	persistent user-defined functions, Persistent UDFs
	personas, What’s Being Clustered?
	points, Geographic types	incorporating geographic point in BigQuery into machine learning, Creating Polygons

	polygons, Geographic types	creating, Creating Polygons

	positional parameters, Positional parameters
	POST requests (HTTP), Querying, Step 1: HTTP POST
	PostgreSQL, Relational Database Management System	arrays in, Advanced SQL

	precision, Choosing the Threshold
	predicate functions (GIS), GIS predicate functions
	predictions, Powerful Analytics	(see also machine learning)
	making in recommender system, Making Recommendations	batch predictions for all users and movies, Batch predictions for all users and movies

	predicting with classification model, Prediction
	predicting with regression model, Predicting with the Model-Generating batch predictions	generating batch predictions, Generating batch predictions
	TRANSFORM clause in prediction query, The need for TRANSFORM

	predicting with TensorFlow models, Predicting with TensorFlow models

	preprocessing functions	ML.BUCKETIZE, Bucketizing the hour of day
	putting all in TRANSFORM clause for prediction query, The need for TRANSFORM

	Pricing Calculator (GCP), Estimating per-query cost
	pricing plans, Controlling Cost
	primitive roles, Primitive roles
	primitives, geographic data in, Geographic types
	printing strings, Printing and Parsing
	privacy and encryption, Privacy and Encryption-Customer-Managed Encryption Keys	Customer-Managed Encryption Keys, Customer-Managed Encryption Keys
	Virtual Private Cloud Service Controls, Virtual Private Cloud Service Controls

	probability threshold, choosing for classification model, Choosing the Threshold
	product features, getting for movies data, Creating input features
	product groups, What’s Being Clustered?
	product recommendations, What’s Being Clustered?
	programmatic development	accessing BigQuery via Google Cloud Client Library, Google Cloud Client Library-Parameterized queries	browsing rows of a table, Browsing the rows of a table
	copying a table, Copying a table
	creating a dataset, Creating a dataset
	creating an empty table with schema, Creating an empty table with schema
	creating empty table, Creating an empty table
	dataset information, Dataset information
	dataset manipulation, Dataset manipulation
	deleting a dataset, Deleting a dataset
	deleting a table, Deleting a table
	extracting data from a table, Extracting data from a table
	inserting rows into a table, Inserting rows into a table
	loading a pandas DataFrame, Loading a pandas DataFrame
	loading from a Google Cloud URI, Loading from a URI
	loading from a local file, Loading from a local file
	modifying attributes of a dataset, Modifying attributes of a dataset
	obtaining table properties, Obtaining table properties
	querying, Querying-Parameterized queries
	table management, Table management
	updating a table's schema, Updating a table’s schema

	accessing BigQuery via REST API, Developing Programmatically-Limitations	dataset manipulation, Dataset manipulation
	queries, limitations of, Limitations
	querying, Querying
	table manipulation, Table manipulation
	using SQL instead of, Table manipulation

	programming languages	Google Cloud Client Library, Google Cloud Client Library
	protobufs and, Simple Queries
	Python, pandas library, Loading a pandas DataFrame
	R language, Working with BigQuery from R

	project ID, Retrieving Rows by Using SELECT
	projects	allocation among reserved slots, Scheduler
	in dataset names, Retrieving Rows by Using SELECT
	rebalancing of project and data, Step 3: Job Server

	protocol buffers (protobufs), How BigQuery Came About, Step 2: Routing
	public user-defined functions, Public UDFs	community-developed, open source UDFs, Public UDFs

	Python	BigQuery client, three ways of loading data, Creating an empty table with schema
	Cloud Client API, Parameterized Queries
	code for Google Cloud Client Library for BigQuery, Google Cloud Client Library
	hyperparameter tuning in, Hyperparameter tuning in Python

Q
	quantiles, Quantiles
	queries, Query Essentials-Summary, Query Engine (Dremel)	(see also Dremel query engine)
	advanced, Advanced Queries-Summary	advanced SQL, Advanced SQL-MERGE statement
	reusable queries, Reusable Queries-Defining constants
	using advanced functions, Advanced Functions-Summary
	using operations in languages other than SQL, Beyond SQL-Advanced Functions

	aggregates, Aggregates-A Brief Primer on Arrays and Structs	computing using GROUP BY, Computing Aggregates by Using GROUP BY
	counting records using COUNT, Counting Records by Using COUNT
	filtering grouped items using HAVING, Filtering Grouped Items by Using HAVING
	finding unique values using DISTINCT, Finding Unique Values by Using DISTINCT

	batch, Batch Queries
	executing using bq query and specifying the query, Executing Queries	setting flags in .bigqueryrc, Executing Queries

	execution by Dremel, Query Execution-Hash join query	broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN query
	hash join query, Hash join query-Hash join query
	scan-filter-aggregate query, Scan-filter-aggregate query-Stage 2
	scan-filter-aggregate query with high cardinality, Scan-filter-aggregate query with high cardinality-Broadcast JOIN query
	scan-filter-count query, Scan-filter-count query-Stage 1

	joining tables, Joining Tables-Saving and Sharing	CROSS JOIN, CROSS JOIN
	INNER JOIN, INNER JOIN
	JOIN statement, The JOIN Explained
	OUTER JOIN, OUTER JOIN

	life of a query request, Life of a Query Request-Step 5: Returning the query results	HTTP POST request, Step 1: HTTP POST
	job server, Step 3: Job Server
	query engine, Step 4: Query engine
	returning query results, Step 5: Returning the query results
	routing to REST endpoint, Step 2: Routing

	performance, key drivers of, Key Drivers of Performance
	primer on arrays and structs, A Brief Primer on Arrays and Structs-Joining Tables	ARRAY of STRUCT, Array of STRUCT
	creating ARRAYs using ARRAY_AGG, Creating Arrays by Using ARRAY_AGG
	tuples, TUPLE
	working with arrays, Working with Arrays

	querying BigQuery using Jupyter Magics and saving results to pandas DataFrame, Working with BigQuery, pandas, and Jupyter
	querying with Google Cloud Client Library, Querying-Parameterized queries	creating a pandas DataFrame, Creating a pandas DataFrame
	dry run before executing the query, Dry run
	executing the query, Executing the query
	parameterized queries, Parameterized queries

	running from Jupyter notebook on GCP	saving results to pandas, Saving query results to pandas

	running within notebooks, Jupyter Magics
	saving and sharing, Saving and Sharing-Summary	query history and caching, Query History and Caching
	saved queries, Saved Queries
	views versus shared queries, Views Versus Shared Queries

	scheduling in BigQuery, Scheduled queries
	simple, Simple Queries-Sorting with ORDER BY	aliasing column names with AS, Aliasing Column Names with AS-Filtering with WHERE
	filtering SELECT results with WHERE, Filtering with WHERE
	retrieving rows using SELECT, Retrieving Rows by Using SELECT-Retrieving Rows by Using SELECT
	SELECT*, EXCEPT, REPLACE, SELECT *, EXCEPT, REPLACE
	sorting with ORDER BY, Sorting with ORDER BY
	subqueries using WITH, Subqueries with WITH

	query engine, distributed (Dremel), Query Engine (Dremel)-Hash join query
	Query Masters, Step 4: Query engine, Query Master	upgrades of, BigQuery Upgrades

	query plans, Query Master	for scan-filter-aggregate query, Stage 0
	for scan-filter-count query, Scan-filter-count query
	reading information in, Reading Query Plan Information-Visualizing the query plan information	obtaining query plan information from job details, Obtaining query plan information from the job details
	visualizing query plan information, Visualizing the query plan information-Visualizing the query plan information

	QUERY_TEXT variable, Querying, Executing Queries
	question answering, Summary of model types

R
	r (raw) prefix for string literals, Regular Expressions
	R language, working with BigQuery from, Working with BigQuery from R-Cloud Dataflow
	race conditions, preventing in table schema updates, Updating a table’s schema
	RAND function, Query History and Caching, Random number generator
	random number generator, Random number generator
	RANGE, Aggregate analytic functions
	RANK function, Numbering functions	difference from DENSE_RANK and ROW_NUMBER in handling ties, Numbering functions

	readSessionUser role, Predefined roles
	recall, Choosing the Threshold
	reclustering, Reclustering
	recommender systems, Recommender, Summary of model types, Recommender Systems-Training hybrid recommendation model	incorporating user and movie information, Incorporating User and Movie Information-Training hybrid recommendation model	creating input features, Creating input features-Creating input features
	obtaining user and product factors, Obtaining user and product factors
	training hybrid recommendation model, Training hybrid recommendation model

	making recommendations, Making Recommendations-Batch predictions for all users and movies	batch predictions for all users and movies, Batch predictions for all users and movies
	customer targeting, Customer targeting

	matrix factorization of ratings matrix, Matrix Factorization-Matrix Factorization
	MovieLens dataset, using, The MovieLens Dataset

	record-oriented stores, How BigQuery Came About, Storage format: Capacitor
	Reed-Solomon encoding, Physical storage: Colossus	(see also erasure encoding)

	REGEXP_CONTAINS function, Regular Expressions
	REGEXP_EXTRACT function, Regular Expressions
	REGEXP_EXTRACT_ALL function, Regular Expressions
	REGEXP_REPLACE function, Regular Expressions
	regions, Zones, Regions, and Multiregions	regional failures, Regional failures
	routing query requests to, Step 2: Routing

	regression, Regression, Summary of model types	building a regression model, Building a Regression Model-More-Complex Regression Models	choosing the label, Choose the Label
	examining model weights, Examining Model Weights-More-Complex Regression Models
	exploring the dataset to find features, Exploring the Dataset to Find Features-Number of bicycles
	predicting ratings, Obtaining user and product factors
	predicting with the model, Predicting with the Model-Generating batch predictions
	training and evaluating the model, Training and Evaluating the Model-Bucketizing the hour of day

	more complex regression models, More-Complex Regression Models-Human insights and auxiliary data	deep neural networks, Deep Neural Networks-Deep Neural Networks
	gradient-boosted trees, Gradient-boosted trees
	human insights and auxiliary data, Human insights and auxiliary data

	regular expressions	using on strings, Regular Expressions
	using WITH clause to abstract away expensive regex function, Caching intermediate results

	regularization in BigQuery ML, Regularization
	regulatory compliance, Regulatory Compliance-Data Exfiltration Protection	data exfiltration protection, Data Exfiltration Protection
	data locality, Data Locality
	data loss prevention, Data Loss Prevention-Data Loss Prevention
	GCP features providing compliance for BigQuery, Security and Compliance
	removing all transactions related to a single individual, Removing All Transactions Related to a Single Individual-Crypto-shredding
	restricting access to subsets of data, Restricting Access to Subsets of Data-Dynamic filtering based on user

	relational database management systems, Relational Database Management System
	remote procedure call (RPC) interface exposed by worker shards, Worker Shard
	repeated fields, Storing data as arrays of structs	nested, repeated fields, Storing data as arrays of structs
	using arrays to store, Using arrays to store repeated fields

	REPLACE, using with SELECT, SELECT *, EXCEPT, REPLACE
	replicated encoding, Physical storage: Colossus
	reservations, Step 2: Routing	flat-rate, Controlling Cost
	reserved slots, Scheduler
	updating size with bq update, Updating

	resources	access to, management by IAM, Resource
	labels for, Labels

	REST APIs	accessing BigQuery via, Accessing BigQuery via the REST API-Limitations	dataset manipulation with HTTP request, Dataset manipulation
	queries, limitations of, Limitations
	querying, Querying
	table manipulation with HTTP requests, Table manipulation
	using SQL instead of, Table manipulation

	batching multiple BigQuery requests, Batching multiple requests
	bq command invoking API exposed by BigQuery, Loading from a Local Source
	measuring query speed using BigQuery REST API, Measuring Query Speed Using REST API
	streaming data directly into BigQuery via, Powerful Analytics

	restoring deleted records and tables, Restoring Deleted Records and Tables
	restoring deleted tables, Deleting a table
	restricting access to subsets of data, Restricting Access to Subsets of Data-Dynamic filtering based on user	authorized views, Authorized views
	dynamic filtering based on user, Dynamic filtering based on user

	reusable queries, Reusable Queries-Defining constants	parameterized queries, Parameterized Queries-Array and struct parameters	array and struct parameters, Array and struct parameters
	named parameters, Named parameters

	reusing parts of queries, Reusing Parts of Queries-Defining constants	correlated subquery, Correlated subquery
	defining constants, Defining constants
	WITH clause, WITH clause

	SQL user-defined functions, SQL User-Defined Functions-Public UDFs	public UDFs, Public UDFs

	user-defined functions	persistent UDFs, Persistent UDFs

	REVERSE function, Transformation Functions
	roles, Role-Custom roles	custom, Custom roles
	predefined, Predefined roles
	primitive, Primitive roles

	ROUND function, Mathematical Functions
	ROW_NUMBER function, Limiting large sorts, Numbering functions
	RPAD function, Transformation Functions
	RTRIM function, Transformation Functions
	run-length encoding, Storage format: Capacitor

S
	SAFE functions, SAFE Functions	SAFE_CAST, Casting and Coercion

	sandbox, using to experiment with BigQuery, Estimating per-query cost
	saving queries, Saved Queries	making saved queries shareable, Saved Queries

	scalar functions, Numeric Types and Functions	prefixing with SAFE to return NULL, SAFE Functions

	scalar query parameters, Array and struct parameters
	scan-filter-aggregate query example, Scan-filter-aggregate query-Stage 2	stage 0, Stage 0
	stage 1, Stage 1
	stage 2, Stage 2

	scan-filter-aggregate query with high cardinality, Scan-filter-aggregate query with high cardinality-Broadcast JOIN query
	scan-filter-count query example, Scan-filter-count query-Stage 1	post-stage 0, Post–stage 0
	stage 0, Stage 0
	stage 1, Stage 1

	scatter plots, drawing in pandas from saved query results, Saving query results to pandas, Working with BigQuery, pandas, and Jupyter
	scheduler, Query Master	assigning slots to queries, Scheduler

	scheduling of queries, Scheduled queries
	schemas	authoritative schema for managed storage, Managed Storage
	changing to use arrays, Using arrays to store repeated fields
	complex, using JSON file for, Complex schema
	creating empty table with schema, Creating an empty table with schema
	examining details of insert job to ascertain the schema, Troubleshooting Workloads Using Stackdriver
	for dataset tables loaded into BigQuery, Loading from a Local Source
	in external table definitions for CSV and JSON files, Temporary table
	information, Building queries dynamically
	not specifying for Parquet and ORC files, Loading and querying Parquet and ORC
	schema of imported TensorFlow model, Predicting with TensorFlow models
	specifying for dataset loaded into BigQuery, Specifying a Schema-Specifying a Schema
	star schemas applied to clustered tables, Side benefits of clustering
	updating table schema using Google Cloud Client Library, Updating a table’s schema

	scipy package (Python), Cloud Dataflow
	scripting, Scripting-Advanced Functions	anatomy of a simple script, Anatomy of a simple script
	loops, Looping
	saving scripts in stored procedures, Stored procedures
	sequence of statements, A sequence of statements
	using for hyperparameter tuning, Hyperparameter tuning using scripting
	using WITH clauses, joins, correlated subqueries, or GROUP BY instead of, A sequence of statements

	security	BigQuery features supporting, Simplicity of Management
	Cloud Security Command Center, Cloud Security Command Center
	GCP features providing security for BigQuery, Security and Compliance
	infrastructure provided by public cloud services, Administering and Securing BigQuery
	infrastructure security for BigQuery, Infrastructure Security-Infrastructure Security
	managing access control for BigQuery using IAM, Administering and Securing BigQuery
	managing access control for BigQuery with IAM, Identity and Access Management-Resource
	privacy and encryption, Privacy and Encryption-Customer-Managed Encryption Keys
	verifying effectiveness of, Dashboards, Monitoring, and Audit Logging

	SELECT * ... LIMIT 10, Side benefits of clustering
	SELECT * EXCEPT statement, Be purposeful in SELECT
	SELECT * LIMIT statement, Be purposeful in SELECT
	SELECT * REPLACE statement, Storing data as geography types
	SELECT * statement, selecting all columns in a table, SELECT *, EXCEPT, REPLACE
	SELECT statement, Query Essentials	being purposeful in, Be purposeful in SELECT
	combining with UNION ALL, A Brief Primer on Arrays and Structs
	conditional expressions using Booleans, Conditional Expressions
	filtering with WHERE clause, Filtering with WHERE
	from UNNEST, UNNEST an Array
	in CREATE OR REPLACE MODEL, data split in, Controlling Data Split
	in WITH clause, Numbering functions
	INSERT VALUES with SELECT subquery, Insert VALUES with subquery SELECT
	leading commas in SELECT clause, Creating Arrays by Using ARRAY_AGG
	limits on results for SELECT queries, Step 5: Returning the query results
	preparing training dataset, Training and Evaluating the Model
	reducing data being read, Reducing data being read
	retrieving rows with, Retrieving Rows by Using SELECT-Retrieving Rows by Using SELECT
	SELECT DISTINCT, Finding Unique Values by Using DISTINCT
	withing a loop, Looping

	self-joins	of large tables, avoiding, Avoiding self-joins of large tables-Reducing the data being joined
	using window function instead of, Using a window function instead of self-join

	sentiment analysis, Summary of model types
	serverless (BigQuery), BigQuery: A Serverless, Distributed SQL Engine
	SESSION_USER function, Dynamic filtering based on user
	SHA hashing algorithms, MD5 and SHA
	Shapefiles, geospatial data in, Geographic types
	shards	in BigQuery upgrades, BigQuery Upgrades
	scheduler farming out work to query shards, Step 4: Query engine
	sharding a query to two or more shards to prevent spilling to disk, Shuffle
	shuffling to sinks, Shuffle
	worker shard allocation by scheduler, Query Master

	sharing queries	making saved queries shareable, Saved Queries
	turning off link sharing to make queries unshareable, Saved Queries
	views versus shared queries, Views Versus Shared Queries

	shuffle sinks, Scheduler, Shuffle
	shuffles, Storage and Networking Infrastructure	in BigQuery queries, Shuffle

	slots in BigQuery, Separation of Compute and Storage, Step 4: Query engine, Worker Shard	assignment by scheduler to queries, Scheduler
	determining how many slots were used by a query, Scan-filter-count query
	purchase of reserved slots, Scheduler
	returned by scheduler, Query Master

	slowly-changing dimensions, The Basics
	Software as a Service (SaaS) applications, loading data into BigQuery, Data Transfer Service
	sorting	clustering data, Clustering
	distributed sort in scan-filter-aggregate query with high cardinality, Distributed sort
	limiting large sorts, Limiting large sorts

	Spanner, Step 5: Returning the query results	database index (IDX), helping find storage sets within a range, Partitioning

	Spark, MapReduce Framework	writing ETL pipeline and executing it on Hadoop cluster, Using the Streaming API directly

	SPLIT function, A Brief Primer on Arrays and Structs
	split points for distributed sort, Distributed sort
	splittable files, Loading from a Local Source
	Spotify, use of BigQuery, Data Processing Architectures
	SQL (Structured Query Language), Relational Database Management System	advanced, Advanced SQL	arrays, working with, Working with Arrays-Window Functions
	Data Definition Language and Data Manipulation Language, Data Definition Language and Data Manipulation Language-MERGE statement
	table metadata, using, Table Metadata-Time travel

	ambiguities of Standard SQL, Advanced SQL
	BigQuery's full-featured support for SQL:2011, Powerful Analytics
	BigQuery, serverless distributed SQL engine, BigQuery: A Serverless, Distributed SQL Engine
	creating string containing SQL to be executed by BigQuery, Querying
	creating tables in, Setting up destination table
	deleting a table or view from BigQuery, Data Management (DDL and DML)
	dialect used in bq command-line tool, Executing Queries
	DML (Data Manipulation Language), DML
	execution by worker shard, Worker Shard
	for computation of data in the cloud, reasons for choosing, How BigQuery Came About
	legacy SQL used by Dremel, Simple Queries
	queries on data in Cloud Bigtable, SQL Queries on Data in Cloud Bigtable-Improving performance
	queries on distributed datasets, Hadoop runningSpark, MapReduce Framework
	SQL/MM 3 specification for spatial functions, Working with GIS Functions
	SQL:2011, BigQuery: A Serverless, Distributed SQL Engine
	standard SQL used by BigQuery, Simple Queries
	support for standard SQL in BigQuery, launch of, How BigQuery Came About
	user-defined functions, SQL User-Defined Functions-Public UDFs
	using instead of client API to access BigQuery programmatically, Table manipulation
	using to automate schema creation, Specifying a Schema

	SQL injection attacks, Parameterized queries	using parameterized queries to prevent, Named parameters

	SSL 3.0 exploit, Infrastructure Security
	SSL/TLS channels, access to API gateway infrastructure, Infrastructure Security
	Stackdriver, Integration with Google Cloud Platform	exporting logs, Exporting Stackdriver Logs-Exporting Stackdriver Logs
	monitoring and audit logging, Stackdriver monitoring and audit logging
	using to troubleshoot workloads, Troubleshooting Workloads Using Stackdriver-Troubleshooting Workloads Using Stackdriver

	standardize_features option, Carrying Out Clustering
	star schemas, Side benefits of clustering
	STARTS_WITH function, String Manipulation Functions
	statistical functions, Useful Statistical Functions-Correlation	for correlation, Correlation
	for quantiles, Quantiles

	storage, Storage-Meta-File	BigQuery storage system providing table and file abstractions, How BigQuery Came About
	choosing efficient storage format, Choosing an Efficient Storage Format-Storing data as geography types	internal vs. external data sources, Internal versus external data sources
	setting up life cycle management on staging buckets, Setting up life cycle management on staging buckets
	storing data as arrays of structs, Storing data as arrays of structs-Storing data as arrays of structs
	storing data as geography types, Storing data as geography types-Storing data as geography types

	managed, in BigQuery, Managed Storage
	metadata, Metadata-Meta-File	clustering, Clustering
	DML (Data Manipulation Language), DML
	meta-file, Meta-File
	partitioning, Partitioning
	storage optimization, Storage optimization
	storage sets, Storage sets
	time travel, Time travel

	of intermediate query results, Scheduler
	physical storage in Colossus, Physical storage: Colossus-Physical storage: Colossus
	separation from compute in BigQuery, ETL, EL, and ELT, Separation of Compute and Storage
	storage format, Capacitor, Storage format: Capacitor-Storage format: Capacitor
	storing data as arrays, Working with Arrays

	Storage API (BigQuery), bulk reads using, Bulk reads using BigQuery Storage API
	storage encoding (see encoding)
	storage sets, Storage sets	new, created by reclustering, Reclustering
	optimized, Storage optimization
	representing partitions in metadata, Partitioning
	with clustering, Clustering

	stored procedures, Insert VALUES with subquery SELECT	saved scripts in, Stored procedures

	streaming data	Cloud Dataflow using streaming inserts to load data into BigQuery, Writing a Dataflow job
	ingest of, support by BigQuery, Powerful Analytics
	into BigQuery, Loading from a Local Source
	newly inserted rows in streaming table, Inserting rows into a table
	streaming inserts into BigQuery via Cloud Pub/Sub and Cloud Dataflow, File Loads
	to ingestion-timed partitioned table, Partitioned tables
	using BigQuery streaming API directly, Using the Streaming API directly
	using time travel to run repeatable query over table fed via stream, Time travel

	string functions, String Functions-Working with TIMESTAMP	internationalization of strings, Internationalization
	printing and parsing strings, Printing and Parsing
	SAFE prefix, SAFE Functions
	string manipulation functions, String Manipulation Functions
	summary of, Summary of String Functions
	transformation functions, Transformation Functions

	STRING type, Data Types, Functions, and Operators, Summary	converting arrays to strings to, Array functions
	detected by AUTO partitioning mode, Loading and querying Hive partitions
	in fingerprint function, Fingerprint function

	strings	arrays of, Array functions
	casting to FLOAT64, Loading from a Local Source
	creating query doing string formatting, security risks of, Parameterized queries
	explicitly converting to INT64, Casting and Coercion
	geographic data in, Geographic types
	in schema autodetection by BigQuery, Specifying a Schema
	NUMERIC types ingested into BigQuery as strings, Precise Decimal Calculations with NUMERIC
	query provided in, Executing Queries
	representing as array of Unicode characters, array of bytes, or array of Unicode code points, Internationalization
	SPLIT function, A Brief Primer on Arrays and Structs

	STRPOS function, String Functions, String Manipulation Functions
	STRUCT keyword	ARRAY of STRUCT, Array of STRUCT
	ending up with tuple or anonymous struct instead of, TUPLE

	STRUCT type, Data Types, Functions, and Operators, Summary
	structures	storing data as arrays of structs, Storing data as arrays of structs-Storing data as arrays of structs
	struct parameters, Array and struct parameters

	ST_AsGeoJSON function, Geographic types
	ST_AsText function, Geographic types
	ST_CENTROID_AGG function, Geometry transformations and aggregations
	ST_Contains function, Working with GIS Functions, GIS predicate functions
	ST_CoveredBy function, GIS predicate functions
	ST_Distance function, GIS Measures
	ST_DWithin function, GIS predicate functions
	ST_GeogFromGeoJSON function, Geographic types
	ST_GeogFromText function, Geographic types
	ST_GeogPoint function, Geographic types
	ST_GeoHash function, Creating Polygons, Human insights and auxiliary data
	ST_Intersects function, GIS predicate functions
	ST_MakeLine function, Creating Polygons
	ST_MakePolygon function, Creating Polygons
	ST_SnapToGrid function, GIS Measures
	ST_UNION function, Geometry transformations and aggregations
	subqueries, Query Engine (Dremel)	correlated, Correlated subquery	for cases seeming to require a script, A sequence of statements

	with WITH clause, Subqueries with WITH

	SUBSTR function, String Functions, String Manipulation Functions	prefixing with SAFE, SAFE Functions

	suffixes (table), Antipattern: Table suffixes and wildcards
	SUM function, using NUMERIC type, Precise Decimal Calculations with NUMERIC
	superQuery, Estimating per-query cost
	supervised machine learning, Machine Learning in BigQuery
	SYSTEM_TIME AS OF, Restoring Deleted Records and Tables

T
	table-valued functions, Numeric Types and Functions
	tables, Metadata	avoiding creation of tables with same name, Deleting a table
	browsing rows using Google Cloud Client Library, Browsing the rows of a table
	clustered, performance optimizations with, Performance optimizations with clustered tables
	copying between datasets using bq cp, Copying datasets
	copying between datasets using Google Cloud Client Library, Copying a table
	creating empty table using Google Cloud Client Library, Creating an empty table
	creating empty table with schema, using Google Cloud Client Library, Creating an empty table with schema
	creating in SQL, Setting up destination table
	creating staging table for updates to apply, DML
	creating with bq mk --table, Creating a table
	creating with complex schema, Complex schema
	deleting a table using Google Cloud Client Library, Deleting a table
	extracting data from using bq extract, Extracting data
	extracting data from, using Google Cloud Client Library, Extracting data from a table
	inserting rows into with bq insert, Loading and inserting data
	inserting rows using Google Cloud Client Library, Inserting rows into a table
	joining, Joining Tables-Saving and Sharing	project and data rebalancing, Step 3: Job Server

	management using Google Cloud Client Library, Table management
	manipulating through HTTP requests to BigQuery REST API, Table manipulation
	metadata, Table Metadata-Time travel
	obtaining properties using Google Cloud Client Library, Obtaining table properties
	query results functionally equivalent to, Step 5: Returning the query results
	recovering deleted tables, Restoring Deleted Records and Tables
	structured storage at table level, Managed Storage
	table/view in dataset names, Retrieving Rows by Using SELECT
	updating schema using Google Cloud Client Library, Updating a table’s schema

	tagging	BigQuery tagging a table with each update, Updating a table’s schema
	tags and labels, Labels and tags
	using label to tag tables with characteristics, Creating a table

	temporary tables	for scripts, Temporary tables
	reading directly from, avoiding, Caching the Results of Previous Queries
	using for federated queries of external data sources, Temporary table

	TensorFlow, Bulk reads using BigQuery Storage API, Machine Learning in BigQuery, Support for TensorFlow-Predicting with TensorFlow models	BigQueryReader, TensorFlow’s BigQueryReader
	exporting BigQuery model as SavedModel, Exporting to TensorFlow
	exporting BigQuery table into TensorFlow records on GCS using Apache Beam/Cloud Dataflow, Apache Beam/Cloud Dataflow
	predicting with TensorFlow models, Predicting with TensorFlow models
	using pandas, Using pandas

	text classification, Summary of model types
	text editors, Specifying a Schema
	text summarization, Summary of model types
	text, Well Known Text (WKT) format for geographic strings, Geographic types
	threshold (probability), choosing for classification model, Choosing the Threshold
	time functions prefixed with SAFE, SAFE Functions
	time travel	querying historical state of a table, Time travel
	using to restore deleted tables, Deleting a table, Time travel

	TIME type, Date, Time, and DateTime, Summary
	time utility, Measuring Query Speed Using REST API
	time zones, Parsing and Formatting Timestamps, Date, Time, and DateTime
	time-insensitive use cases, Time-Insensitive Use Cases-File Loads	batch queries, Batch Queries
	file loads, File Loads

	TIMESTAMP type, Data Types, Functions, and Operators, Working with TIMESTAMP-Date, Time, and DateTime, Summary	arithmetic with, Arithmetic with Timestamps
	DATE, TIME, and DATETIME, Date, Time, and DateTime
	detection by AUTO partitioning mode, Loading and querying Hive partitions
	extracting calendar parts, Extracting Calendar Parts
	parsing and formatting, Parsing and Formatting Timestamps

	timestamps	named timestamp parameters, Named timestamp parameters
	Unix timestamp in milliseconds, Job Management
	using to restore table version from past time within seven days, Deleting a table

	TIMESTAMP_MILLIS function, Extracting Calendar Parts
	Titan chip, Infrastructure Security
	tools for direct reads from BigQuery Storage API, Bulk reads using BigQuery Storage API
	TO_JSON_STRING function, Specifying a Schema, Array functions
	training datasets, creating for regression model, Creating a Training Dataset
	training models	classification model, Training
	data split with evaluation, controlling, Controlling Data Split
	deep neural network model, Deep Neural Networks
	hybrid recommendation model, Training hybrid recommendation model
	linear regression model, Training and Evaluating the Model
	matrix factorization model, Matrix Factorization

	Transfer Appliance, Data Migration Methods
	transfers of data into BigQuery, Transfers and Exports-Cross-region dataset copy	Data Transfer Service, Data Transfer Service-Cross-region dataset copy	creating a transfer job, Create a transfer job
	cross-region dataset copy, Cross-region dataset copy
	data locality, Data locality
	scheduled queries, Scheduled queries
	setting up destination table, Setting up destination table

	transformations	TRANSFORM clause in CREATE OR REPLACE MODEL, data split in, Controlling Data Split
	TRANSFORM clause, using for regression model, The need for TRANSFORM-Generating batch predictions
	transforming TensorFlow records with tf.transform, Apache Beam/Cloud Dataflow

	TRIM function, Transformation Functions
	tuples, TUPLE
	Twitter, use of BigQuery, Data Processing Architectures

U
	UDFs (see user-defined functions)
	undoing deletions of records and tables, Restoring Deleted Records and Tables
	Unicode strings in BigQuery, Internationalization
	UNION ALL, using with SELECT, A Brief Primer on Arrays and Structs
	union of geography types, Geometry transformations and aggregations
	Unix epoch, number of seconds from, Extracting Calendar Parts
	Unix shell, using bash to get access tokens, Table manipulation
	UNIX_MILLIS function, Extracting Calendar Parts
	UNIX_SECONDS, Aggregate analytic functions
	UNNEST function, A Brief Primer on Arrays and Structs, UNNEST an Array, Storing data as arrays of structs	flattening arrays, in FROM clause, Using arrays to store repeated fields

	unstructured data, Unstructured data, Summary of model types	converting to structured data, Unstructured data

	UPDATE statement, DML	adding entry to an array, Updating row values
	applying no-op UPDATE to a partition, Reclustering
	updating row values, Updating row values

	updates, BigQuery not designed for very-high-frequency DML updates, DML
	upgrades to BigQuery, BigQuery Upgrades
	URIs	BigQuery, Accessing BigQuery via the REST API
	loading BigQuery table directly from Google Cloud URI, Loading from a URI

	URLs	BigQuery REST URLs, Dataset manipulation
	HTTP DELETE request to BigQuery REST API URL, Table manipulation

	user role, Predefined roles
	user-defined functions, Numeric Types and Functions	JavaScript, JavaScript UDFs-JavaScript UDFs
	optimizing, Optimizing user-defined functions
	SQL, SQL User-Defined Functions-Public UDFs	persistent UDFs, Persistent UDFs
	public UDFs, Public UDFs

	users	authorizing, Authorizing Users
	dynamic filtering based on, Dynamic filtering based on user

	UTF-8 encoding, Internationalization
	UUIDs (universally unique identifiers), UUID

V
	variables	declaring constants as, Defining constants
	declaring for stored procedures, Parameters to stored procedures

	versions (BigQuery), Accessing BigQuery via the REST API
	views	authorized, Authorized views
	creating from queries using bq mk, Creating views
	versus shared queries, Views Versus Shared Queries
	updating query corresponding to, using bq update, Updating

	Virtual Private Cloud Service Controls (VPC-SC), Security and Compliance, Virtual Private Cloud Service Controls
	visualizations	drawing scatter plot in pandas from saved query results, Saving query results to pandas, Working with BigQuery, pandas, and Jupyter
	of geospatial data, Geometry transformations and aggregations
	plotting interactive map using Python folium package, Working with BigQuery, pandas, and Jupyter
	visualizing query plan information, Visualizing the query plan information-Visualizing the query plan information
	visualizing the billing report, Visualizing the billing report

W
	web UI (BigQuery)	newly inserted rows in streaming table, Inserting rows into a table
	one-time data loads from, Loading from a Local Source
	saving and sharing queries from, Saved Queries
	transfers of data into BigQuery, Data locality
	viewing persistent user-defined function, Persistent UDFs

	weights	examining for linear regression model, Examining Model Weights-More-Complex Regression Models
	joining with user table in recommender system, Creating input features
	user and product factors for recommender system, Obtaining user and product factors

	Well Known Text (WKT), Geographic types	converting geographies to/from strings in, Geographic types

	WGS84 ellipsoid, Working with GIS Functions, Geographic types
	What-If tool, Examining Model Weights
	WHERE clause	Boolean expressions in, Logical Operations
	casting in, Loading from a Local Source
	comparisons and NULL values, Comparisons
	correlated subqueries in, Correlated subquery
	filtering for NULL values in, Finding Unique Values by Using DISTINCT
	filtering results returned by SELECT, Filtering with WHERE
	GIS predicate functions in, GIS predicate functions
	LIKE operator, SELECT *, EXCEPT, REPLACE
	partitioning and clustering tables in, Insert SELECT
	using GROUP BY instead of, Computing Aggregates by Using GROUP BY

	WHILE loop, Looping
	wildcards	using for file paths with bq mkdef and bq load, Wildcards
	using to search tables, Antipattern: Table suffixes and wildcards

	window functions, Window Functions-Table Metadata	aggregating analytic functions, Aggregate analytic functions
	navigation functions, Navigation functions
	numbering functions, Numbering functions
	using instead of self-join, Using a window function instead of self-join

	WITH clause	for cases seeming to require a script, A sequence of statements
	frequent use of, caching query results instead of, Caching intermediate results
	holding constants, Defining constants
	reusing parts if queries in, WITH clause
	SELECT statement in, Numbering functions
	using for subqueries, Subqueries with WITH
	using to abstract away expensive regex function, Caching intermediate results
	using user-defined functions in, SQL User-Defined Functions

	worker shards	allocation by scheduler, Query Master
	avoiding overwhelming a worker, Avoiding Overwhelming a Worker-Optimizing user-defined functions	data skew, Data skew
	limiting large sorts, Limiting large sorts
	optimizing user-defined functions, Optimizing user-defined functions

	functions of, Worker Shard
	JavaScript UDFs limited to single worker, JavaScript UDFs

	Workload Tester, using to measure query speed, Measuring Query Speed Using BigQuery Workload Tester-Measuring Query Speed Using BigQuery Workload Tester
	workloads, troubleshooting using Stackdriver, Troubleshooting Workloads Using Stackdriver-Troubleshooting Workloads Using Stackdriver

X
	XGBoost machine learning model, Gradient-boosted trees

Y
	YouTube Channel, transferring data from, Create a transfer job

Z
	zless, Loading from a Local Source
	zones, Zones, Regions, and Multiregions	zonal failures, Zonal failures

 Google BigQuery: The Definitive Guide

 by
 Valliappa
 Lakshmanan
 and
 Jordan
 Tigani

 Copyright © 2020 Valliappa Lakshmanan and Jordan Tigani. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Editor:
 Nicole Taché

 	
 Production Editor:
 Kristen Brown

 	
 Copyeditor:
 Octal Publishing, LLC

 	
 Proofreader:
 Arthur Johnson

 	
 Indexer:
 Ellen Troutman-Zaig

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Rebecca Demarest

 	
 October 2019:
 First Edition

 Revision History for the First Edition

 	
 2019-10-23:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492044468
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Google
 BigQuery: The Definitive Guide, the cover image, and related trade dress
 are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors, and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-04446-8

 [LSI]

