BI Consult
  • Перейти на QlikSense
  • Перейти на QlikView
  • Перейти на Tableau
  • Перейти на Power BI
  • российские bi dwh dl
  • Главная
  • Продукты Business-Qlik
    • Дистрибуция
    • Розничная торговля
    • Производство
    • Операторы связи
    • Страхование
    • Банки
    • Лизинг
    • Логистика
    • Нефтегазовый сектор
    • Медицина
    • Сеть ресторанов
    • Энергетика
    • Фрод-менеджмент
    • E-Commerce
    • Фармацевтика
    • Построение хранилища данных
    • Создание Data Lake
    • Цифровая трансформация
    • Управление по KPI
    • Финансы
    • Продажи
    • Склад
    • HR
    • Маркетинг
    • Внутренний аудит
    • Категорийный менеджмент
    • S&OP и прогнозная аналитика
    • Геоаналитика
    • Цепочки поставок (SCM)
    • Process Mining
    • Сквозная аналитика
  • Платформы
    • Qlik Sense
    • QlikView
    • Tableau
    • Microsoft Power BI
    • Геоаналитика Qlik GeoAnalytics
    • Qlik NPrinting - рассылка отчетности QlikView/Qlik Sense
    • KliqPlanning Suite - бюджетирование в QlikView
    • ATK BiView-1C Коннектор (для Qlik/Tableau/PowerBI)
    • QlikView/Qlik Sense SAP Коннектор
    • QlikView R-Коннектор
    • Qlik Web Connectors - коннектор Google, Facebook, Twitter
    • Vizlib Qlik Sense extentions (библиотека экстеншнов)
    • Библиотека extention для Qlik
    • Qlik Alerting
    • Qlik Data Integration Platform - создание Data Lake
    • Qlik Data Catalog решение для Data Governance
    • ATK BiView документация
  • Услуги
    • Консалтинг
    • Пилотный проект
    • План обучения и сертификации
    • Подготовка специалистов по Qlik
    • Бесплатное обучение Qlik
    • Сертификация Qlik
    • Поддержка
    • Технические задания
    • Сбор требований для проекта внедрения BI-системы
    • Аудит приложений Qlik и Tableau
    • Разработка BI Стратегии
    • Styleguide для BI-системы
    • Как выбрать BI-систему
  • Курсы
    • Учебный курс по Qlik Sense
    • Учебный курс по Tableau
    • Учебный курс по Microsoft Power BI
    • Учебный курс Информационная грамотность (Data Literacy)
    • Учебный курс Современная архитектура хранилища данных
    • Учебный курс для бизнес-аналитиков
    • Учебный курс по NPrinting
    • Учебный курс по BigQuery
    • Учебный курс по Azure Databricks
    • Учебный курс по DWH
    • Учебный курс по Data Governance
    • Учебный курс по Data Science (ML, AI)
    • Учебный курс администратора Qlik Sense
  • Компания
    • Руководство
    • Новости
    • Клиенты
    • Карьера
    • Скачать
    • Контакты

QlikView / Qlik Sense

  • Qlik Sense
    • Возможности Qlik Sense
    • Qlik Sense Enterprise
    • Qlik Sense Desktop
    • Qlik Sense Saas облачная инфраструктура для компаний
    • Источники данных и хранение данных
    • Безопасность и разграничение прав доступа
    • Масштабируемость
    • Политика лицензирования Qlik Sense
    • Qlik Sense November 2021: новые возможности
    • Географические карты в Qlik Sense
    • Qlik Sense Cloud / Qlik Sense в облаке
    • Учебное пособие по Qlik Sense
  • QlikView
    • Архитектура
    • Отличия QlikView от традиционных BI-систем
    • Политика лицензирования QlikView
    • Системные требования и сайзинг
    • Отличие от OLAP-систем
    • QlikView on Mobile
    • Qlik и Big Data
    • Демонстрационные примеры
    • QlikView в "облаке" (Amazon) / QlikView in the cloud
    • Интеграция QlikView с Microsoft SharePoint
    • Учебное пособие по QlikView
    • Что такое QlikView Publisher
    • QlikView Extranet Server и дистрибуция отчетности внешним пользователям
  • Qlik Data Catalog
  • Qlik Alerting
  • Qlik Data Integration Platform
  • Add-ons для QlikView
    • Vizlib Qlik Sense extentions (библиотека экстеншнов)
    • QlikView/Qlik Sense ATK BiView-1C Коннектор
    • Документация ATK BiView
    • Qlik NPrinting
    • Геоаналитика Qlik GeoAnalytics
    • GeoQlik
    • KliqPlanning Suite
    • QlikView/Qlik Sense SAP Коннектор
    • QlikView R-Коннектор
    • Qlik Web Connectors
    • QlikView Cognos TM1 Коннектор
    • Визуализация графов в Qlik Sense с помощью Ogma / Linkurious
  • Учебный курс по Qlik Sense

Tableau

  • Tableau
    • Tableau Desktop
    • Tableau Server
    • Tableau Prep
    • Технологии
    • Источники данных Tableau
    • Безопасность в Tableau
    • Политика лицензирования
    • Tableau 2021: новые возможности
    • Сравнение продуктов Tableau (Desktop, Server, Online, Public)
    • Демонстрационные примеры
    • Учебный портал Tableau
    • Коробочное решение "Мониторинг Tableau Server"
    • Чем отличаются Tableau Reader и Viewer?
  • Учебный курс по Tableau

Другое

  • Microsoft Power BI
    • Power BI Desktop
    • Power BI Report Server
    • Отраслевые решения Microsoft Power BI
    • Политика лицензирования Microsoft Power BI
    • Power BI Mobile
    • Учебные курсы Microsoft Power BI
    • Архитектура Power BI
    • Обработка данных в Power BI
    • Аудит системы Power BI
  • Учебный курс по Microsoft Power BI
  • Alteryx
    • Alteryx Designer
    • Инструменты Alteryx Designer
    • Alteryx Server
    • Alteryx Analytics Gallery
    • Alteryx. Создание приложения, workflow, ETL
  • Data Engeneering
    • Создание Data Lake
    • Создание Data Warehouse
    • Учебный курс "Современная архитектура хранилища данных"
Главная » Курсы » Учебный курс по Data Science (ML, AI)

Матрица неточностей в машинном обучении

Введение в матрицу неточностей в машинном обучении

Матрица неточностей – это массив, используемый для описания производительности модели классификации в машинном обучении. Она также известна как матрица ошибок. В этой статье я расскажу вам о матрице неточностей в машинном обучении.

 

Что такое матрица неточностей в машинном обучении?

Это – метод оценки эффективности модели классификации. Идея состоит в том, чтобы подсчитать, сколько раз экземпляры класса 1 классифицируются как класс 2. Например, чтобы узнать, сколько раз модель классификации путала изображения собаки с кошкой, вы используете матрицу неточностей.

Чтобы вычислить матрицу неточностей для данной модели классификации, у вас должен быть набор прогнозируемых значений, чтобы их можно было сравнить с набором фактических значений. Вы можете использовать его как на тестовых, так и на тренировочных наборах.

 

Давайте разберемся с этим на примере

В матрице неточностей каждая строка представляет фактический класс, а каждый столбец представляет прогнозируемый класс. Давайте сформулируем задачу, чтобы лучше понять концепцию.

Например, мы обучили модель машинного обучения отличать изображения собак от изображений других животных. Теперь, после использования матрицы неточностей для прогнозируемых значений, мы получили результат, как показано в таблице ниже:

 

53057

1522

1325

4096

 

Итак, согласно приведенной выше таблице, первая строка представляет изображения, не относящиеся к собакам, которые относятся только к отрицательному классу, где 53057 из этих значений правильно классифицируются как изображения, не относящиеся к собакам, эти значения известны как истинно отрицательные в машинном обучении. Остальные 1522 значения в первой строке неправильно классифицируются как изображения собак, и эти значения называются ложно положительными в машинном обучении.

Теперь снова посмотрите на таблицу выше, вторая строка таблицы представляет значения изображений собаки, которые являются положительным классом в соответствии с постановкой задачи. Здесь 1325 – это количество раз, когда изображения собак классифицируются как изображения, не относящиеся к собакам, которые в машинном обучении называются ложно отрицательными, а остальные 4096 – это количество раз, когда модель предсказывала их истинность как изображения собаки, и эти значения известны как истинно положительные стороны машинного обучения.

Идеальная модель классификации будет иметь только истинно положительные и истинно отрицательные значения, и это означает, что если матрица неточностей не будет иметь нулевых значений на ее основных диагоналях, модель классификации будет идеальной, как показано ниже.

 

54579

0

0

5421

 

Надеюсь, вам понравилась эта статья о том, что такое матрица неточностей и ее концепция.

 

Узнать стоимость решенияЗапросить видео презентацию

Запросить видео презентацию Запросить доступ к демо стенду online Узнать стоимость лицензий

Задать вопрос

loading...

Решения

Анализировать ФинансыУвеличивайте ПродажиОптимальный Склад и ЛогистикаМаркетинговые Метрики

Клиенты

  • classic-spb

    Созданная в 1998 году, компания "Классик" сегодня - современная, обладающая огромными возможностями организация, специализирующаяся в сфере оптовых и розничных продаж продовольствия, оказания услуг по логистике.

  • Аргус-Спектр

    Анализ эффективности отдела планирования; анализ эффективности деятельности компании.

  • Сеть магазинов «Магнит»
    Разработка концепции работы системы анализа ключевых показателей деятельности магазина розничной сети;
    Реализация механизма автоматической рассылки email оповещений;
    Визуализация KPI на мобильных устройствах;
    Картографическое расширение (аналитика QlikView на Yandex.Maps, OpenStreetMap);
    Написание технической документации;
  • Внедрение QlikView в fashion retail, готовое отраслевое решение для fashion retail по аналитике

    Интеграция готового отраслевого решения BusinessQlik for Fashion Retail для:

    Блок задач № 1. Анализ продаж и Анализ Чеков,

    Блок задач № 2. Анализ Товародвижения,      

    Блок задач № 3. Рабочее место Руководителя,

     

    Реализовано более 150 отчетных форм.

  • Решения
    • Дистрибуция
    • Розничная торговля
    • Производство
    • Операторы связи
    • Банки
    • Страхование
    • Фармацевтика
    • Лизинг
    • Логистика
    • Медицина
    • Нефтегазовый сектор
    • Сеть ресторанов
  • Продукты
    • Qlik Sense
    • QlikView
    • Tableau
    • Microsoft Power BI
    • ATK BiView-1C Коннектор (для Qlik/Tableau/PowerBI)
    • Vizlib Qlik Sense extentions (библиотека экстеншнов)
    • NPrinting
    • Геоаналитика Qlik GeoAnalytics
    • KliqPlanning Suite
    • Qlik WebConnectors
    • QlikView R Коннектор
    • QlikView/Qlik Sense SAP Коннектор
    • Alteryx
    • Qlik Data Catalog
    • Документация ATK BiView
  • Услуги
    • Консалтинг
    • Пилотный проект
    • Поддержка
    • План обучения и сертификации Qlik
    • Бесплатное обучение
    • Учебные курсы
    • Сертификация Qlik
    • Аудит приложений
  • Курсы
    • Учебный курс по Qlik Sense
    • Учебный курс по Tableau
    • Учебный курс по Microsoft Power BI
    • Учебный курс Современная архитектура хранилища данных
    • Учебный курс Информационная грамотность
    • Учебный курс для бизнес-аналитиков
    • Учебный курс по NPrinting
    • Учебный курс по Azure Databricks
    • Учебный курс по Google BigQuery
  • Компания
    • О нас
    • Руководство
    • Новости
    • Клиенты
    • Скачать
    • Контакты
  • Функциональные решения
    • Продажи
    • Финансы
    • Склад
    • HR
    • S&OP и прогнозная аналитика
    • Внутренний аудит
    • Геоаналитика
    • Категорийный менеджмент
    • Построение хранилища данных
    • Система управления KPI и BSC
    • Управление цепочками поставок
    • Маркетинг
    • Цифровая трансформация
    • Сквозная аналитика
    • Process Mining
QlikView Partner
LinkedInYouTubeVkontakteFacebook
ООО "Би Ай Консалт",
ИНН: 7811437757,
ОГРН: 1097847154184
199178, Россия,
Санкт-Петербург,
6-ая линия В.О., Д. 63, 4 этаж
Тел: +7 (812) 334-08-01
Тел: +7 (499) 608-13-06
E-mail: info@biconsult.ru