BI Consult
  • Перейти на QlikSense
  • Перейти на QlikView
  • Перейти на Tableau
  • Перейти на Power BI
  • Контакты
  • +7 812 334-08-01
    +7 499 608-13-06
  • EN
  • Отправить сообщение
  • Главная
  • Продукты Business-Qlik
    • Дистрибуция
    • Розничная торговля
    • Производство
    • Операторы связи
    • Страхование
    • Банки
    • Лизинг
    • Логистика
    • Нефтегазовый сектор
    • Медицина
    • Сеть ресторанов
    • Энергетика
    • Фрод-менеджмент
    • E-Commerce
    • Фармацевтика
    • Построение хранилища данных
    • Создание Data Lake
    • Цифровая трансформация
    • Управление по KPI
    • Финансы
    • Продажи
    • Склад
    • HR
    • Маркетинг
    • Внутренний аудит
    • Категорийный менеджмент
    • S&OP и прогнозная аналитика
    • Геоаналитика
    • Цепочки поставок (SCM)
    • Process Mining
    • Сквозная аналитика
  • Платформы
    • Qlik Sense
    • QlikView
    • Tableau
    • Microsoft Power BI
    • Геоаналитика Qlik GeoAnalytics
    • Qlik NPrinting - рассылка отчетности QlikView/Qlik Sense
    • KliqPlanning Suite - бюджетирование в QlikView
    • ATK BiView-1C Коннектор (для Qlik/Tableau/PowerBI)
    • QlikView/Qlik Sense SAP Коннектор
    • QlikView R-Коннектор
    • Qlik Web Connectors - коннектор Google, Facebook, Twitter
    • Vizlib Qlik Sense extentions (библиотека экстеншнов)
    • Библиотека extention для Qlik
    • Qlik Alerting
    • Qlik Data Integration Platform - создание Data Lake
    • Qlik Data Catalog решение для Data Governance
    • ATK BiView документация
  • Услуги
    • Консалтинг
    • Пилотный проект
    • План обучения и сертификации
    • Подготовка специалистов по Qlik
    • Бесплатное обучение Qlik
    • Сертификация Qlik
    • Поддержка
    • Технические задания
    • Сбор требований для проекта внедрения BI-системы
    • Аудит приложений Qlik и Tableau
    • Разработка BI Стратегии
    • Styleguide для BI-системы
    • Как выбрать BI-систему
  • Курсы
    • Учебный курс по Qlik Sense
    • Учебный курс по Tableau
    • Учебный курс по Microsoft Power BI
    • Учебный курс Информационная грамотность (Data Literacy)
    • Учебный курс Современная архитектура хранилища данных
    • Учебный курс для бизнес-аналитиков
    • Учебный курс по NPrinting
    • Учебный курс по BigQuery
    • Учебный курс по Azure Databricks
    • Учебный курс по DWH
    • Учебный курс по Data Governance
    • Учебный курс по Data Science (ML, AI)
    • Учебный курс администратора Qlik Sense
  • Компания
    • Руководство
    • Новости
    • Клиенты
    • Карьера
    • Скачать
    • Контакты

QlikView / Qlik Sense

  • Qlik Sense
    • Возможности Qlik Sense
    • Qlik Sense Enterprise
    • Qlik Sense Desktop
    • Qlik Sense Saas облачная инфраструктура для компаний
    • Источники данных и хранение данных
    • Безопасность и разграничение прав доступа
    • Масштабируемость
    • Политика лицензирования Qlik Sense
    • Qlik Sense November 2021: новые возможности
    • Географические карты в Qlik Sense
    • Qlik Sense Cloud / Qlik Sense в облаке
    • Учебное пособие по Qlik Sense
  • QlikView
    • Архитектура
    • Отличия QlikView от традиционных BI-систем
    • Политика лицензирования QlikView
    • Системные требования и сайзинг
    • Отличие от OLAP-систем
    • QlikView on Mobile
    • Qlik и Big Data
    • Демонстрационные примеры
    • QlikView в "облаке" (Amazon) / QlikView in the cloud
    • Интеграция QlikView с Microsoft SharePoint
    • Учебное пособие по QlikView
    • Что такое QlikView Publisher
    • QlikView Extranet Server и дистрибуция отчетности внешним пользователям
  • Qlik Data Catalog
  • Qlik Alerting
  • Qlik Data Integration Platform
  • Add-ons для QlikView
    • Vizlib Qlik Sense extentions (библиотека экстеншнов)
    • QlikView/Qlik Sense ATK BiView-1C Коннектор
    • Документация ATK BiView
    • Qlik NPrinting
    • Геоаналитика Qlik GeoAnalytics
    • GeoQlik
    • KliqPlanning Suite
    • QlikView/Qlik Sense SAP Коннектор
    • QlikView R-Коннектор
    • Qlik Web Connectors
    • QlikView Cognos TM1 Коннектор
    • Визуализация графов в Qlik Sense с помощью Ogma / Linkurious
  • Учебный курс по Qlik Sense

Tableau

  • Tableau
    • Tableau Desktop
    • Tableau Server
    • Tableau Prep
    • Технологии
    • Источники данных Tableau
    • Безопасность в Tableau
    • Политика лицензирования
    • Tableau 2021: новые возможности
    • Сравнение продуктов Tableau (Desktop, Server, Online, Public)
    • Демонстрационные примеры
    • Учебный портал Tableau
    • Коробочное решение "Мониторинг Tableau Server"
    • Чем отличаются Tableau Reader и Viewer?
  • Учебный курс по Tableau

Другое

  • Microsoft Power BI
    • Power BI Desktop
    • Power BI Report Server
    • Отраслевые решения Microsoft Power BI
    • Политика лицензирования Microsoft Power BI
    • Power BI Mobile
    • Учебные курсы Microsoft Power BI
    • Архитектура Power BI
    • Обработка данных в Power BI
    • Аудит системы Power BI
  • Учебный курс по Microsoft Power BI
  • Alteryx
    • Alteryx Designer
    • Инструменты Alteryx Designer
    • Alteryx Server
    • Alteryx Analytics Gallery
    • Alteryx. Создание приложения, workflow, ETL
  • Data Engeneering
    • Создание Data Lake
    • Создание Data Warehouse
    • Учебный курс "Современная архитектура хранилища данных"
Главная » Курсы » Учебный курс по Data Science (ML, AI)

Модель ARIMA в машинном обучении

Модель ARIMA означает интегрированное скользящее среднее с авторегрессией. Эта модель предоставляет набор функций, которые являются очень мощными и гибкими для выполнения любых задач, связанных с прогнозированием временных рядов.

В машинном обучении модель ARIMA обычно представляет собой класс статистических моделей, которые дают выходные данные, которые линейно зависят от их предыдущих значений в комбинации стохастических факторов.

При выборе подходящей модели прогнозирования временных рядов нам необходимо визуализировать данные для анализа тенденций, сезонности и циклов. Когда сезонность является очень сильной характеристикой временных рядов, нам необходимо рассмотреть такую модель, как сезонная ARIMA (SARIMA).

Модель ARIMA работает с использованием модели распределенного запаздывания, в которой алгоритмы используются для прогнозирования будущего на основе запаздывающих значений. В этой статье я покажу вам, как использовать модель ARIMA, используя очень практичный пример из машинного обучения, которым является обнаружением аномалий.

 

Обнаружение аномалий с помощью модели ARIMA

Обнаружение аномалий означает выявление неожиданных событий в процессе. Это означает обнаружение угроз для наших систем, которые могут нанести вред с точки зрения безопасности и утечки важной информации.

Важность обнаружения аномалий не ограничивается безопасностью, но оно используется для обнаружения любого события, которое не соответствует нашим ожиданиям. Здесь я объясню вам, как мы можем использовать модель ARIMA для обнаружения аномалий.

Я буду использовать данные, основанные на поминутных показателях загрузки ЦП хоста. Теперь приступим к выполнению этой задачи, импортировав необходимые библиотеки:

 

import pandas as pd
!pip install pyflux
import pyflux as pf
from datetime import datetime

 

Теперь давайте импортируем данные и кратко рассмотрим данные и некоторые из них. Вы можете скачать данные, которые я использую в этой задаче, отсюда.

 

from google.colab import files
uploaded = files.upload()
data_train_a = pd.read_csv('cpu-train-a.csv', parse_dates=[0], infer_datetime_format=True)
data_test_a = pd.read_csv('cpu-test-a.csv', parse_dates=[0], infer_datetime_format=True)
data_train_a.head()

 

 

Теперь давайте визуализируем эти данные, чтобы быстро понять, с чем мы работаем:

 

import matplotlib.pyplot as plt
plt.figure(figsize=(20,8))
plt.plot(data_train_a['datetime'], data_train_a['cpu'], color='black')
plt.ylabel('CPU %')
plt.title('CPU Utilization')

 

 

Использование модели ARIMA

А сейчас давайте посмотрим, как мы можем использовать модель ARIMA для прогнозирования данных:

 

model_a = pf.ARIMA(data=data_train_a, ar=11, ma=11, integ=0, target='cpu')
x = model_a.fit("M-H")

 

Запуск 1:

Приемлемость Metropolis-Hastings = 0.0


Запуск 2:

Приемлемость Metropolis-Hastings = 0.026


Запуск 3:

Приемлемость Metropolis-Hastings = 0.2346


Обучение завершено! Запуск на выборке:

Приемлемость Metropolis-Hastings = 0.244425

 

Теперь давайте визуализируем нашу модель:

 

model_a.plot_fit(figsize=(20,8))

 

 

Приведенные выше выходные данные показывают использование ЦП с течением времени с учетом прогноза модели ARIMA. Теперь давайте проведем образец теста, чтобы оценить производительность нашей модели:

 

model_a.plot_predict_is(h=60, figsize=(20,8))

 

 

Приведенные выше выходные данные показывают входящую в выборку (обучающую выборку) нашей модели прогнозирования ARIMA. Теперь я выполню фактический прогноз, используя последние 100 наблюдаемых точек данных, за которыми следуют 60 прогнозируемых точек:

 

model_a.plot_predict(h=60,past_values=100,figsize=(20,8))

 

 

Давайте выполним такое же обнаружение аномалии для другого сегмента набора данных об использовании ЦП, захваченного в другое время:

 

data_train_b = pd.read_csv('cpu-train-b.csv', parse_dates=[0], infer_datetime_format=True)
data_test_b = pd.read_csv('cpu-test-b.csv', parse_dates=[0], infer_datetime_format=True)
plt.figure(figsize=(20,8))
plt.plot(data_train_b['datetime'], data_train_b['cpu'], color='black')
plt.ylabel('CPU %')
plt.title('CPU Utilization')

 

 

Теперь давайте сопоставим эти данные с моделью:

 

model_b = pf.ARIMA(data=data_train_b, ar=11, ma=11, integ=0, target='cpu')
x = model_b.fit("M-H")

 

Запуск 1:

Приемлемость Metropolis-Hastings = 0.0


Запуск 2:

Приемлемость Metropolis-Hastings = 0.016


Запуск 3:

Приемлемость Metropolis-Hastings = 0.1344


Запуск 4:

Приемлемость Metropolis-Hastings = 0.21025


Запуск 5:

Приемлемость Metropolis-Hastings = 0.23585


Обучение завершено! Запуск на выборке:

Приемлемость Metropolis-Hastings = 0.34395

 

model_b.plot_predict(h=60,past_values=100,figsize=(20,8))

 

 

Мы можем визуализировать аномалию, которая возникает через короткое время после периода обучения, поскольку наблюдаемые значения попадают в диапазоны низкой достоверности, поэтому это вызовет предупреждение об аномалии.

Надеюсь, вам понравилась эта статья об обнаружении аномалий с помощью модели ARIMA.

 

Узнать стоимость решенияЗапросить видео презентацию

Запросить видео презентацию Запросить доступ к демо стенду online Узнать стоимость лицензий

Задать вопрос

loading...

Решения

Анализировать ФинансыУвеличивайте ПродажиОптимальный Склад и ЛогистикаМаркетинговые Метрики

Клиенты

  • Внедрение QlikView в fashion retail, готовое отраслевое решение для fashion retail по аналитике

    Внедрение/кастомизация решения BusinessQlik for Fashion Retail c решением задач: DashBoard, Жизнь Артикула, Отчет Сводный, Отчет Реализация 8 недель, Конструктор

  • Деньга
    Разработка концепции для консолидация финансовой отчетности по филиалам компании;
    Разработка концепции создания матрицы данных для отслежевания поведения клиентов, вплоть до уровня транзакций
    Написание технической документации;
    Поддержка пользователей.
  • Модуль Экономика ТМ Системы бизнес-анализа на базе платформы QlikView предназначен для расшифровки информации о продажах, расходах и прибыли товарного ассортимента ООО «Комус» в разрезе от общего к частному (по товарным рынкам, категориям, отварным матрицам, ассортиментным группам, артикулам в разрезах каналов, регионов, признаков за различные временные периоды и предоставления возможности по анализу этих данных с использованием графических и табличных представлений. 

  • Сеть магазинов «Магнит»
    Разработка концепции работы системы анализа ключевых показателей деятельности магазина розничной сети;
    Реализация механизма автоматической рассылки email оповещений;
    Визуализация KPI на мобильных устройствах;
    Картографическое расширение (аналитика QlikView на Yandex.Maps, OpenStreetMap);
    Написание технической документации;
  • Решения
    • Дистрибуция
    • Розничная торговля
    • Производство
    • Операторы связи
    • Банки
    • Страхование
    • Фармацевтика
    • Лизинг
    • Логистика
    • Медицина
    • Нефтегазовый сектор
    • Сеть ресторанов
  • Продукты
    • Qlik Sense
    • QlikView
    • Tableau
    • Microsoft Power BI
    • ATK BiView-1C Коннектор (для Qlik/Tableau/PowerBI)
    • Vizlib Qlik Sense extentions (библиотека экстеншнов)
    • NPrinting
    • Геоаналитика Qlik GeoAnalytics
    • KliqPlanning Suite
    • Qlik WebConnectors
    • QlikView R Коннектор
    • QlikView/Qlik Sense SAP Коннектор
    • Alteryx
    • Qlik Data Catalog
    • Документация ATK BiView
  • Услуги
    • Консалтинг
    • Пилотный проект
    • Поддержка
    • План обучения и сертификации Qlik
    • Бесплатное обучение
    • Учебные курсы
    • Сертификация Qlik
    • Аудит приложений
  • Курсы
    • Учебный курс по Qlik Sense
    • Учебный курс по Tableau
    • Учебный курс по Microsoft Power BI
    • Учебный курс Современная архитектура хранилища данных
    • Учебный курс Информационная грамотность
    • Учебный курс для бизнес-аналитиков
    • Учебный курс по NPrinting
    • Учебный курс по Azure Databricks
    • Учебный курс по Google BigQuery
  • Компания
    • О нас
    • Руководство
    • Новости
    • Клиенты
    • Скачать
    • Контакты
  • Функциональные решения
    • Продажи
    • Финансы
    • Склад
    • HR
    • S&OP и прогнозная аналитика
    • Внутренний аудит
    • Геоаналитика
    • Категорийный менеджмент
    • Построение хранилища данных
    • Система управления KPI и BSC
    • Управление цепочками поставок
    • Маркетинг
    • Цифровая трансформация
    • Сквозная аналитика
    • Process Mining
QlikView Partner
LinkedInYouTubeVkontakteFacebook
ООО "Би Ай Консалт",
ИНН: 7811437757,
ОГРН: 1097847154184
199178, Россия,
Санкт-Петербург,
6-ая линия В.О., Д. 63, 4 этаж
Тел: +7 (812) 334-08-01
Тел: +7 (499) 608-13-06
E-mail: info@biconsult.ru